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Abstract

This thesis addresses the problem of automatic planning in real world domains

where temporal and consumable resource constraints have to be taken into ac-

count. The classes of problems modelled are based on real world domains (such

as UAV, robotic agents, etc.) and require a complex encoding process in powerful

planning languages such as the latest PDDL extensions. As test bed of the dif-

ferent modelling solutions described we used a multi-UAV domain with multiple

target observation requests. We show how to encode the problems both in nu-

merical planning and in temporal planning and how the state-of-art planners are

able to deal with the complexity of the class of problems. Planners can efficiently

handle the baseline problems but they proved to have difficulties in solving more

complex problems where numerical and temporal constraints are introduced. In

particular, temporal constraints on targets observation introduce a complexity that

many state-of-art planners cannot easily face. For some of the modelled classes of

problems we developed appropriate heuristics and solutions in order to facilitate

the planning and obtain acceptable results in reasonable computational time. The

thesis reports extensive experimental results concerning multi-UAV multi-target

planning problems encountered in the industrial research project SMAT-F2.
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Chapter 1

Introduction

Planning is a deliberative process that searches for a sequence of actions that

results in a state of the world which satisfies a set of goal conditions. Starting from

a particular description of the initial state, planning evaluates the applicability of

a set of possible actions and simulates their execution by anticipating the expected

outcomes. The deliberation produces a set (or a sequence) of actions that must

be executed in order to achieve as best as possible the set of goals.

Automated planning is a central area of Artificial Intelligence that aims to study

and develop efficient automated solutions for this deliberative process. The main

goal of automated planning is the design of a powerful deliberation layer for au-

tonomous intelligent agents which requires a small effort by human operators.

This purpose is due to the growing presence of intelligent systems acting in real

world and to the need to make them more autonomous also in high-level decision

making. While sometimes autonomy of intelligent systems is only an option, in

some contexts it is almost essential. In some domains in which environment is

only partially known a priori or where it is not possible to perform an on-line

monitoring by a human operator, autonomy of intelligent systems is compulsory.

Some intelligent systems (e.g. a rover in a extra-planetary mission), in fact, can-

not always be fully remotely controlled because of operational constraints (e.g.

delay in communications). These systems need a complex deliberation level which

allows them to be enough autonomous w.r.t. to their tasks. It is also worth noting

that autonomy of intelligent systems doesn’t concern only planning and deliber-

ation but also acting. These two aspects are not completely disjoint: actors may
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deliberate or plan both before and during acting in order to perform intelligent

executions, and deliberation may be strictly influenced by acting details ([1]).

Automated planning initially focused on propositional planning (which nowadays

is called classical planning [2]) and it was supported by the introduction of STRIPS

([3]). Classical planning problems are composed of three elements: an initial state

(the description of the initial state of the world), a final state (the description of

a set of goal conditions on world’s elements to be achieved) and a set of actions

that, when applied, produce a state transition. States are symbolic high-level

descriptions of the world in terms of a set of propositions. Actions are instead

characterized by a set of preconditions and a set of effects which respectively spec-

ifies which propositions must belong to the state in order for the action to be

applicable and which propositions the action will add or remove when applied (we

talk of ADD- and DEL- lists). Solving a classical planning problem means search-

ing for an ordinate sequence of actions which leads the world from the initial state

to a final one where goal conditions are satisfied. This definition of problems led

to address planning by means state space search algorithms (e.g. GraphPlan) and

to develop many planners implementing these algorithms and exploiting languages

such as STRIPS and the first development of PDDL ([4]).

By reasoning only with symbolic entities, classical planning has to make some

assumptions and simplifications on the world, such as considering actions as in-

stantaneous or ignoring numerical aspects of domains. However in dealing with

complex real-world problems (e.g. planning an expedition of a rover in space) it

is necessary to consider elements such as time or resource consumption, because

obviously actions in real world occur over a time span, consume a certain quantity

of resources and can be scheduled concurrently. Because of the limitations due to

the abstraction level of symbolic planning, the gap between the produced plans

and the real actions’ execution is too wide and it doesn’t allow an intelligent mon-

itoring of execution. In order to reduce this gap between planning and acting, it is

thus necessary to refine the domain’s model adopted by deliberation and introduce

structures allowing to express significant acting aspects also at planning time.

In recent years automatic planning languages have been extended with primitives

allowing to express also numerical and temporal aspects of problems (e.g. PDDL

2.1, the PDDL extension to numerical aspects and durative actions ([5])) and

some assumptions of symbolic planning, such as the absence of actions’ duration

or temporal aspects, have been relaxed. This allowed to take into account at

2



CHAPTER 1. INTRODUCTION 3

planning time of more acting aspects and to redce the gap between deliberation

and control layers, leading to the generation of more realistic and robust plans and

facilitating the on-line intelligent monitoring.

Numerical and temporal planning allow in fact to deal with more realistic plan-

ning problems involving complex autonomous systems such as aircrafts or robotic

agents acting in real world. Solving a numerical planning problem requires to con-

sider, in addition to propositional constraints, also numerical constraints concern-

ing consumable resources. Solving a temporal planning problem requires instead

to consider, beside all the constraints of both classical and numerical planning, also

the temporal characteristics of problems. In particular it must consider the possi-

bility of several temporally overlapping (concurrent) actions, the actions’ temporal

location and their duration. At the same way it must consider during the plan-

ning the current absolute time and how far the execution of each active action has

proceeded as well as constraints on total plan duration.

It is worth noting that, despite the need to reduce the gap between planning and

acting, the capabilities of agents to model abstracts away from their low-level sen-

sor or motor commands. The detailed complexities of agents’ movements, engines

power cycle, sensors pointing, data acquisition, etc., which are obviously impor-

tant in a completely accurate representation of a real-world problem are abstracted

away by the agent capabilities formulation of a planning model, and assumed to

be dealt by the acting low-level control processes. However the choice of the right

abstraction level of the planning model is a challenging task: it should both al-

low to perform deliberation in a reasonable time and also produce plans which

aren’t too abstract w.r.t. the real acting needs, allowing intelligent monitoring

and execution.

Another important aspect of automated planning is the distinction between off-

line and on-line planning. While on-line planning has to be performed during

the agents’ execution after that the running plan for some reason at a given time

is no more adequate (we talk of re-planning or continual planning, [6]), off-line

planning is a procedure that has to be performed before the real execution. The

main distinction between the two approaches concerns the constraints at which

is subjected the planning process. On-line planning is mainly constrained by

requirements on computational resources and on time response, due to the need

to obtain a new plan as soon as possible, off-line planning instead does not require

particularly strict constraints on the computational or temporal resources needed

3
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for synthesizing a plan and the interest is usually more focused on the quality of

the solution provided.

In this thesis we addressed a class of real-world problems based on real world

domains involving teams of agents (such as UAV1 or robotic agents) in which

temporal and consumable resource constraints are mandatory. We adopted an ab-

straction level that, as we’ll see in the following chapters, allows to define actions

for planning purposes oriented to a centralized off-line planning system of man-

aging and coordination of teams of (possibly heterogeneous) agents. We tried to

reduce as much as possible the gap between deliberation and control levels while

both maintaining a reasonable planning time and producing plans that allow in-

telligent monitoring during on-line agents’ execution.

We developed a complex software architecture which includes planning process

and permits to encode the domain in a way as simply as possible in order to solve

complex problems in reasonable times while also maintaining the level of abstrac-

tion close enough to the real acting needs. We demanded the low-level controls

(e.g. sensor pointing, agents’ movements, etc.) to single agents which have spe-

cific on-line acting and deliberative capabilities. The system also performs a series

of abstraction during encoding of planning problems which allow to simplify the

problems without losing significant information. These simplification reduce the

problems’ complexity by hiding to the planners a series of information and allow

to easier and faster find (if possible) a valid solution to the problems. However by

exploiting an internal database to store the hidden data (see chapter 4) there is no

significant lose of information. In fact, during encoding phase, the system stores

into an internal database all information hidden to the planner, in order to restore

them during solution decoding (see chapters 5 and 6 for more details about the

abstractions performed and the decoding process).

We studied how to deal with real world planning problems for teams of agents by

adopting a centralized approach to multi-agent planning. Multi-agent planning

is the problem of planning for a group of agents in order to achieve goals that

single agents couldn’t be able to achieve by themselves, or at least to achieve

them better. A solution to a multi-agent planning problem is a partially ordered

plan that as well as in classical planning results in a set of achieved goals for

some of the agents. The main difference is that a plan is not necessary centralized

1Unmanned aerial vehicles, also called RPA, Remotely piloted aircrafts, or simply drones.
They are aircrafts without a human pilot aboard.
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CHAPTER 1. INTRODUCTION 5

but it can be created and distributed on each agent which performs a private

planning (or re-planning) supported by its private and available actions and then

communicates with other agents ([7]). However, when problems require many

interactions among agents the coordination activities are very expensive and a

centralized approach to multi-agent planning may be preferable. We choice to

adopt a centralized approach because of the strict coordination necessary between

different agents in order to satisfy temporal constraints on the observations of

targets expressed as requirements of the problems. This choice is also due to the

off-line nature of our purposes. Our solutions have been in fact designed to be

employed in a central station of control of a team of heterogeneous agents2, which

aims to off-line build mission plans for teams of agents, therefore a centralized

approach is more appropriated.

In this thesis we modeled the class of problems both in numerical and temporal

planning and we analyzed how the main state-of-art planners are able to deal

with the complexity of the problems. The modeling of domain and problems in

temporal and numerical formalisms is not trivial and the challenges are many.

Chapters 5 and 6 identify in detail the challenges to face when adopting the two

approaches and describe the solutions we found. A challenge common to both

approaches concerns planners efficiency, which is a relevant problem in dealing

with real world problems. In fact, even if off-line planning doesn’t have strict time

limits to obtain a solution, real world problems can require a quantity of time

which is unacceptable, especially when planning is integrated in a system that must

interact with human operators. For this reason for some of the modeled classes

of problems we also developed appropriate heuristics and solutions in order to

facilitate the planning and obtain acceptable results in reasonable computational

time.

2Part of our solutions have actually been employed in the large industrial research
project SMAT-F2, whose primary objective was to develop an Advanced Environment
Monitoring System, based on Unmanned Air Systems. Our planning model has been
developed in SMAT-F2 together with a complex software architecture adopted by the
SSC (Station of Supervision and Coordination, the central node of the architecture, al-
lowing the operators to coordinate and support specific multi-UAV missions ( Altec
SMAT)) in order to single out an hypothesis of mission plan possibly involving mul-
tiple UAVs. (http://beta.di.unito.it/index.php/italiano/ricerca/gruppi/intelligent-semantic-
technologies/progetti/smat).
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1.1. OUTLINE OF THE THESIS 6

1.1 Outline of the thesis

The thesis is organized as follows:

• Chapter 2 first describes the main features of PDDL (which is considered

the state of art in automatic planning languages) and its extensions. In

particular it describes the concepts of numerical fluents, durative actions and

timed initial literals, introduced in PDDL 2.1 and PDDL 2.2 and essential

in our modeling. The second part of the chapter provides a formal definition

of the above mentioned planning types (classical, numerical, temporal and

multi-agent planning) and reports a brief description of the main state-of-art

planners able to deal with these modeling.

• Chapter 3 defines the class of problems we addressed. It is subdivided in

five sections: section 3.1 describes a baseline class of problems, the following

sections increasingly extend the baseline class of problems by introducing

new levels of complexity in terms of additional constraints on the problems.

• Chapter 4 describes the adopted architecture which allows the encoding

and the planning of the class of problems according to the choice of using a

PDDL formalism.

• Chapters 5 and 6 describe in detail how to encode the main features

of the addressed class of problems and its extensions in both temporal and

numerical planning models. They also show the difficulties to be faced during

the phase of decoding of the planners solutions in order to report to the end

user a consistent and easy-to-read solution.

• Chapter 7 reports a description of a series of real-world multi-UAV multi-

target planning scenarios and the results that can be obtained with both

numerical and temporal planning. The chapter also analyzes the capabil-

ities of planners to handle our class of problems. Planners, in fact, can

efficiently handle the baseline problems but they proved to have difficulties

in solving more complex problems where numerical and temporal constraints

are introduced. In particular, temporal constraints on targets observation

introduce a complexity that many state-of-art planners cannot easily face.

6



Chapter 2

PDDL and planning

2.1 PDDL

In order to represent planning problems, in 1998 has been introduced by Drew

McDermott et al. the Planning Domain Definition Language (PDDL). PDDL is

a language inspired by the STRIPS formulations of planning problems, with a

Lisp-like syntax. A planning problem is defined in PDDL by two components: a

domain description and a problem description. The former provides the definition

of parameterized actions that characterize domain behaviors as well as the defini-

tion of types of objects, predicates and fluents (functions) used in the problems.

The latter provides instead the definition of specific objects, initial conditions,

goals of a problem and a plan’s metric. Such type of separation allows the use

of variables to parameterize actions and allows the reuse of a single domain with

different problem instances.

Although the core of PDDL follows the STRIPS formalism, the language extends

beyond that. PDDL allows negative preconditions and conditional effects in action

definition and the use of quantification in expressing both pre- and post- condi-

tions. Furthermore PDDL allows to express a type structure for the objects in a

domain, typing the parameters that appear in actions and constraining the types

of arguments to predicates. During the planning process, and in particular during

the grounding phase of planning, the parametrized actions are then replaced by a

set of grounded actions where formal parameters are replaced by actual parameters

(the specific predicates in the problem).

7



2.1. PDDL 8

Another important feature provided by PDDL is the possibility of representing

functions whose value changes in different situations. These functions are numeri-

cal variables called fluents and allow to represent numeric quantities and to assign

or update them. Fluents are obviously useful in planning with realistic domains

in which it is common to have to deal with non-binary resources that can change

(e.g. the fuel or the energy level of a vehicle, the distance or the time). Numerical

variables, in fact, can be exploited to define action preconditions (e.g. a vehicle

cannot go from one point to another if it has not fuel enough) or numeric con-

straints to be satisfied by the final plan (e.g. the total time of the plan must be

less than a certain value).

2.1.1 PDDL 2.1

In 2003 has been developed PDDL 2.1, an extension of PDDL which allows to

express both temporal and numeric properties introducing numeric expressions,

plan metrics and durative actions.

2.1.1.1 Numeric expressions

Numeric expressions are constructed, using arithmetic operators, from primitive

numeric expressions (values associated with tuples of domain objects by domain

functions). Numeric expression can be non-linear expression and they can be used

both in action preconditions, defining numeric constraints as a comparison between

pairs of numeric expressions (e.g. (>= (fuel level ?v) 10))), and in action ef-

fects, updating a numeric fluent value assigning it a new value (e.g. (assign

(fuel level ?v) 7))) or increasing/decreasing it(e.g. (increase (fuel level

?v) 3)) or (decrease (fuel level ?v) 4))). Numeric expressions allow to in-

crease the expressiveness of PDDL and permit a better representation of domains.

They also extend the possibilities of planners which can keep track of numerical

information and exploit them during the planning process.

2.1.1.2 Plan metrics

Plan metrics allow to specify the criteria on which a plan has to be evaluated

in terms of numeric expressions (e.g. (:metric minimize (powerC))). Metrics

8



CHAPTER 2. PDDL AND PLANNING 9

can be defined in the problem description with any arithmetic expression with no

requirement of linearity and they can require to minimize or maximize the given

expression.

It is worth noting that different plan metrics might yield entirely different optimal

plans also with the same initial and goal states. It is also worth noting that a

planner might choose to not use the metric to guide its development of a solution

but just to evaluate a solution post hoc, and unfortunatley it is an approach

adopted by many planners. This approach might lead to sub-optimal, and possibly

even poor quality plans. No guarantee of optimality is provided by the first (and

only) solution found (if possible). In such cases it might be necessary to develop

a framework around the planner which permit to try to improve the plan quality.

2.1.1.3 Durative actions

Another important extension of the representaion power of PDDL 2.1 concern the

notion of durative anctios. This kind of formalism allows to define temporally

annotated actions. A durative action is in fact defined by duration constraints

(lower and/or upper bounds on duration of the action), and temporally annotated

conditions and effects (conditions and effects that must be satisfied or applied at

specific points in time).

1 ( : durative−action a

2 . . .

3 : c ond i t i on (and

4 ( at s t a r t (p ) )

5 ( over a l l (p ) )

6 ( at end (p ) )

7 )

8 . . .

9 )

Listing 2.1: Temporally annotated conditions of a durative action

Conditions can be instantaneous or continuous (and both propositional and nu-

merical). The formers are conditions that must hold either at the start or end of

the action’s execution (respectively the point in time at which the action is applied

and the point at which the final effects of the action are asserted) (see rows 4 and

6 in Listing 2.1). The latter are conditions that must hold continuously over all

9



2.1. PDDL 10

the action’s execution (in the interval between the start and the end, extremes

excluded) (see row 5 in Listing 2.1). Notice that in Listing 2.1 the reported condi-

tions concern only a propositional fluent p but conditions can relate to more than

a single propositional fluent and can also relate to numerical fluents.

Effects can be instantaneous or continuous too. The formers are propositional and

numeric effects that occur at the start and/or end the action’s execution. In case

of numerical fluents they are instantaneous updates of their value (see Listing 2.2)

and they are applied at the specified point in time. The latter are exclusively nu-

meric effects (logical changes are always considered as instantaneous) that occur

continuously throughout its execution. In this case the value of a numeric fluent

can be increased or decreased according to a specific rate of change over time. It is

used the language keyword #t that represents a local clock of the action and refers

to the continuous changing time from the start of the action itself (in Listing 2.3 is

shown an effect that, during the execution of the action, continuously decrease the

value of the numeric fluent fuel-level). Continuous effects are not temporally

annotated, in this way they can be evaluated by the planner at any time during

the interval of the action.

1 ( : durative−action a

2 . . .

3 : ef fect (and

4 ( at s t a r t (p ) )

5 ( at end (p ) )

6 ( at end ( dec r ea se ( fu e l−l e v e l ) 10) )

7 )

8 . . .

9 )

Listing 2.2: Instantaneous effects of a durative action

1 ( : durative−action move

2 . . .

3 : ef fect (and

4 ( dec r ea se ( fu e l−l e v e l ) (∗ #t ( consumption−r a t e ) ) )

5 )

6 . . .

7 )

Listing 2.3: Continuous effects of a durative action

10
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As well as for plan metrics it is worth noting that planners following PDDL 2.1

syntax not necessarily supports continuous numerical effects.

An important conseguence of the introduction of durative actions is related to

concurrency. This kind of action in fact implies the presence of time in planning

problems. Before the introduction of time, final plans were implicitly considered

as list of sequential actions. With the introduction of durative actions, which are

scheduled at a specific point in the time and have a duration, plans are not anymore

simply lists of sequential actions. Every action, instead, has its own starting point

in time and potentially every action can be concurrently scheduled in overlap with

all others in plan. Of course the introduction of this kind of features enormously

extends the possibility of temporal reasoning but at the same time introduces

additional complexity in modeling and solving planning problems. In fact, on one

hand it allows the definition of more realistic domains in which actions can be

concurrently executed, as well as the possibility of modeling multiple cuncurrent

agents problems. One the other hand it has a consistent impact on both planners

complexity, in terms of search alghoritms, plan validation and heuristics, and

domains and problems definition, in terms of modeling conditions and effects of

cuncurrent actions and defining sets of actions which can be cuncurrently scheduled

or which are mutually exclusive.

It is worth considering the conseguences of durative actions in terms of final plan

structure. As already mentioned, durative actions have not to be sequential. On

one hand it allows the planner to schedule overlapping actions (where possible).

However on the other hand it also implies that in a final valid plan an action can

start after a certain amount of time after the end of the execution of the previ-

ous one, leaving in plan ”holes” between actions. In fact there is no constraint

that forces the sequentiality of actions and some problem goals may require the

execution of an action at a specific time point. Listing 2.4 reports an example of

plan with a “hole” between actions (see also Fig. 2.1 which report a graphical

representation of the plan).

1 0 . 0 0 0 : ( d r i v e r1 ) [ 5 . 0 0 0 ]

2 9 . 0 0 0 : ( tp r1 ta rge t1 ) [ 2 . 0 0 0 ]

3 1 1 . 0 0 1 : (comm r1 ) [ 3 . 0 0 0 ]

Listing 2.4: A simple temporal plan in which there is a hole of four time units

between the first action and the following tp (take picture) action (see rows 1

and 2).

11
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Figure 2.1: A graphic representation of the plan reported in Listing 2.4. The
dotted line represents the hole between the actions.

The plan is composed by three actions of a simple rover domain and solves a prob-

lem which requires the rover r1 take a picture of target target1 and communicate

the picture to the base. Listing 2.5 reports a partial version of the problem. No-

tice that the target target1 is only observble between time 9 and time 15. Since

there is no constraint of sequentiality between durative actions in PDDL, the plan

reported in Listing 2.4 is a valid plan for the planner.

1 . . .

2 ( : in i t

3 ( at 9 ( obse rvab l e t a rg e t1 ) )

4 ( at 15 (not ( obse rvab l e ta rg e t1 ) ) )

5 . . .

6 )

7 ( : goal (and

8 ( observed ta rge t1 )

9 ( communicated picture r1 )

10 ) )

Listing 2.5: A partial description of the problem solved by the plan in Listing

2.4.

While in some domains this is the desired or at least an acceptable result (e.g a

rover after a scheduled action can simply do nothing for a certain amount of time,

even if not necessarily optimal), in other domains doing nothing is not a valid

option. Let’s consider for example a domain of UAVs: a drone, after a monitoring

task can not simply do nothing. In fact, normally a drone (e.g a MALE, Medium-

Altitude Long-Endurance, drone) is not able to hover. If hover is not possible

the UAV has to immediately performs some other task, even just a loiter, which

requires a certain amount of time and fuel and which also has effects in terms of

change of UAV position in space. However even if hover is possible, perform it

requires a certain amount of time and also a significant amount of fuel. Therefore

simply left “holes” in a plan in a domain UAV-like is not a viable solution.

12
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2.1.2 PDDL 2.2

Another significant extension of PDDL concern the introduction in PDDL 2.2 ([5])

of a formalism called timed initial literals. Timed initial literals are a simple way

to express facts that become true or false at specific time points indipendently of

the action scheduled by the planner.

This formalism has been introduced in order to easily represent events that occur

at specific time points and exclusively depend on environment. This kind of event

is quite common in realistic domain especially in terms of time windows. In fact

it is easy to model with timed initial literals time windows in which a certain fact

holds. For example they can be used to model time windows within which a target

is observable by an UAV, a shop is open, there is daylight, etc.

Listing 2.6 reports an example of usage of timed initial literals. In problem file they

define a time window (from 3 to 20) in which the target target1 is observable,

that is in which the propositional fluent observable target1 holds. In domain

file the durative action monitor requires the observability of the target ?t taken as

parameter, during the entire duration of the action. Therefore in order to observe

target target1 the monitor action must be performed within the time windows

defined by the timed initial literals.

1 ; ; problem f i l e

2 ( : in i t

3 ( at 3 ( obse rvab l e t a rg e t1 ) )

4 ( at 20 (not ( obse rvab l e ta rg e t1 ) ) )

5 . . .

6 )

7

8 ; ; domain f i l e

9 ( : durative−action monitor

10 : parameters (? t − Target . . . )

11 . . .

12 : c ond i t i on (and

13 ( at s t a r t ( obse rvab l e ? t ) )

14 ( o v e r a l l ( obse rvab l e ? t ) )

15 ( at end ( obse rvab l e ? t ) )

16 . . .

17 )

18 . . .

19 )

Listing 2.6: Example of usage of timed initial literals.

13



2.1. PDDL 14

2.1.3 PDDL 3.1 and multi-agent extensions

In the most recent International Planning competitions (from 2008 IPC) a new

version of PDDL has been adopted. PDDL 3.1 [8] is the latest version of the lan-

guage. W.r.t. the previous version it mainly introduced object-fluents which are

functions whose range could be any object-type and not only numerical. Listing

2.7 reports an example of definition of object-fluents definition. Notice at lines 7,

8 and 9 the definition of three object-fluents whose types are objects.

1 ; ; domain f i l e

2 ( : types

3 uav − agent

4 t a r g e t waypoint f l e v e l a i r p o r t − ob j e c t )

5 . . .

6 ( : f u n c t i o n s

7 ( at ?u − uav ) − ( e i t h e r waypoint a i r p o r t )

8 ( in ? t − t a r g e t ) − waypoint

9 ( f u e l−l e v e l ?u − uav ) − f l e v e l

Listing 2.7: Example of definition of object-fluents in PDDL 3.1.

Some PDDL 3.1 extensions (such as MA-PDDL [9] and FMAP’s extension of

PDDL 3.1 [10]) are used in the most recent planning competitions in which multi-

agent planning is increasingly becoming a point of interest. The key points of

these languages are:

• The possibility to distinguish capabilities of agents defining different actions

for different agents. Listings 2.8 reports an example of definition of two dif-

ferent take off actions respectively applicable only by uav1 and uav2 and

each one with different effects.

1 ( : action t a k e o f f

2 : agent uav1

3 : parameters ( )

4 : precondition (= ( at uav1 ) a i r p o r t 1 )

5 : ef fect (and ( a s s i g n ( at uav1 ) wp1)

6 ( dec r ea se ( fu e l−l e v e l uav1 ) 2)

7 )

8 )

9 ( : action t a k e o f f

10 : agent uav2

11 : parameters ( )

14
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12 : precondition (= ( at uav2 ) a i r p o r t 1 )

13 : ef fect (and ( a s s i g n ( at uav1 ) wp2)

14 ( dec r ea se ( fu e l−l e v e l uav2 ) 4)

15 )

16 )

Listing 2.8: Example of action definition in MA-PDDL.

• The possibility to define different goals or metrics for different agents. The

following Listing reports an example of definition of a metric that every

agent must maximize. It is also possible define different metrics (or goals)

according to agents.

1 ( : metr ic : agent ?u − uav

2 : u t i l i t y maximize ( fu e l−l e v e l ?u ) )

Listing 2.9: Example of multi-agent metric definition in MA-PDDL.

• Extensions to partially observable environments, introducing private objects

in domain definition. In the following Listing for example the object-fluent

fuel-level is defined as private.

1 ( : p r e d i c a t e

2 . . .

3 ( : p r i v a t e ?u − uav

4 ( f u e l−l e v e l ?u) − f l e v e l

5 . . .

6 )

7 )

Listing 2.10: Example of private predicates definition in MA-PDDL.

• Probabilistic and conditional effects. Listing 2.11 reports an example of

action that may fail according to a certain probability.

1 ; ; domain f i l e

2 . . .

3 ( : action sensor power on

4 : parameters (? s − camera ?u − uav )

5 . . .

6 : ef fect (and . . .

7 (when (not ( f a i l s e n s o r p o w e r o n ) )

8 ( a c t i v e s e n s o r ? s ?u ) )

9 )

10 )

11

12 ; ; problem f i l e

13 . . .

15
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14 ( : in i t

15 ( p r o b a b i l i s t i c 0 . 1 ( f a i l s e n s o r p o w e r o n ) )

16 . . .

17 )

Listing 2.11: Example of action with probabilistic effects.

2.2 Planning

Development of planning languages has occurred in parallel to the evolution of

planning research in which over the years have been developed several refinements

of search alghoritms and new heuristics. Practically, in fact, classical planning can

be treated as a problem of search in states space. Task of a planner is to create a

plan (classically a sequence) of actions that permits to achieve, starting from an

initial state, a final state in which goal conditions are satisfied.

2.2.1 Classical Planning

Let F be a set of propositional variables(fluents). In classical planning a state

s ⊆ F is a subset of fluents F ′ that are true, while F\s is a subset of fluents that,

according to the Closed Word Assumption, are assumed to be false.

Let A be a set of actions, I ⊆ F an initial state (a set of fluents that hold at

the beginning of planning), and G ⊆ F a set of goal conditions, we can define

a classical planning instance as a tuple P = 〈F,A, I,G〉. Each action a ∈ A is

defined by a set of preconditions pre(a) ⊆ F , and a set of effects divided in an

ADD-LIST (add(a) ⊆ F ) and a DEL-LIST (del(a) ⊆ F ). We say that an action

is applicable in a state s if and only if pre(a) holds in s. To apply a in s implies

a state transition that results in a new state s′ = (s\ del(a)) ∪ add(a).

Finally a plan for the problem P in classical planning is a sequence of actions

Π = a1, ..., an such that for each 1 ≤ i ≤ n, ai is applicable in si−1, with s0 = I

and sj (for each j > 0) is the state obtained applying the sequence of actions

a1, ..., aj. The plan Π solves the problem P if G holds in sn.

As shown, classical planning doesn’t take into account of numerical fluents. Classi-

cal planning is in fact restricted to symbolic reasoning and there isn’t the possibility

16
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of expressing numerical or temporal information. Languages used in classical plan-

ning are STRIPS and the first version of PDDL. A storical and efficient planner

able to solve traditional problems is FF [11]. It performs a very efficient forsward

state-space best-first search exploiting a relaxed version of GraphPlan algorithm

as heuristic. In particular it searches for a relaxed plan (in polynomial time using a

planning graph) and takes the relaxed-plan length as heuristic value. This efficient

approach popularized FF and currently it is the basis of many state-of-art plan-

ners (even not symbolic). Many other symbolic planners have been developed in

the past years and they can now manage symbolic problems in a very performant

way.

2.2.2 Numerical Planning

Classical planning has been treated in depth in the past years and it can be con-

sidered a well-understood problem. However it is evident that many aspects of

real world (in particular those involving numbers) are not fully represtable with

such type of abstraction. The necessity of solve more complex and closer to real

world problems have led to development of PDDL 2.1 and, as shown above, to

the introduction of numeric fluents (e.g. not every planner supports continuous

numeric effects). It is worth noting that despite numerical fluents have been in-

troduced in PDDL 2.1 together with durative actions, they are not considered in

numerical planning. Talking of durative actions we refer to temporal planning.

Numerical planning is an interesting task and have been developed many planners

that can handle numerical fluents. However planning with numeric fluents is an

undecidable problem [12], so the performances of planners are not always high and

not every planner supports all languages features.

A numerical planning instance is analogous to a classical planning instance: it is

a tuple P = 〈F,A, I,G〉, where F, I, and G are defined as for classical planning

but F = 〈S,N〉 is a set composed by a set of propositional variables (S) and a

set of numerical variables (N) (propositional and numerical fluents) and G is a

set of goal conditions that can be both propositional and numerical. A numerical

condition is a condition on the value of one or more numerical fluents, expressed

as a numeric expression. It is satisfied in a state s if the numeric expression is

satisfied by the values of numerical fluents involved.
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A state s ⊆ F is a couple 〈S ′, N〉 with S ′ ⊆ S, a set of propositional fluent that are

true, and N is the set of numerical variables with an associated numerical value.

Let A be a set of actions, each action a ∈ A is defined by two types of preconditions

and two types of effects: propositional and numerical precondition (pre(a)) and

propositional and numerical effects (eff(a)). A propositional precondition is a on

the truth value of a propositional fluents p ∈ S ′ that must be satisfied by the

state to make the action applicable. A numerical precondition is a numerical

condition on the value of one or more numerical fluents, expressed as a numeric

expression using relational operators {=, 6=, <,≤,≥, >}. It is satisfied in a state s

if the numeric expression is satisfied by the values of numerical fluents involved. A

propositional effect is an assignment of a truth value to a propositional variable.

As well as in classical planning, propositional effects are divided in an ADD-LIST

(add(a)) and a DEL-LIST (del(a)). Finally a numerical effect is an update of the

value of a numeric fluent by assigning it a specific value or increasing or decreasing

it by a certain quantity.

An action a ∈ A is applicable in a state s if and only if all propositional conditions

in pre(a) holds and all numerical conditions in pre(a) are satisfied by the fluent

values in s. To apply a in s implies a state transition that results in a new state in

which for all propositional effects in eff(a) the relative propositional fluent’s truth

value is updated according to the ADD- and DEL- lists, while the truth value of

the propositional fluents not involved in eff(a) remains unchanged. Similarly for

all numerical effects in eff(a) the numerical fluent’s value is updated according to

the effect and the values of the numerical fluents not involved in eff(a) remains

unchanged.

Finally a plan Π for a problem P is almost identical to a classical planning plan. Π

solves P if G holds in sn where sn is the final state and G is the set of propositional

and numerical goals, that is a set of propositional fluents that must hold and a set

conditions on numerical variables that must be satisfied in the final state.

Numerical planning is a typology of planning which is commonly adopted in order

to solve many planning problems of real-world domains. There are many numeric

planners which in IPCs competed with each other. One of the earliest but still

performing is Metric-FF [13], a 2003 planner which extends FF to numerical vari-

ables and that has proved to be very competitive in the numerical domains of

the 3rd International Planning Competition [14], also allowing to optimize the
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final plan according to a specified metric. One of the most efficient numerical

planner is COLIN [15] which is capable of reasoning with COntinuous LINear nu-

meric changes, using a combination of forward-search and linear programming. Its

forward-chaining search heuristic is similar to the one used by FF (i.e. it is based

on the same relaxed planning graph used in FF), while the pruning techniques are

based on temporal constraints. Even if it has been released in 2012, Colin still is

a state-of-art planner and because of its versatility in handling PDDL 2.1 and 2.2

features it is the planner we preferred and the one we used more in our study, also

in temporal planning (because of its support to continuous numeric effects, which,

as we’ll see in 5, are important in modeling temporal problems in UAV domain). A

disadvantage in using Colin is that it does not perform any effective optimization.

It supports plan metrics but it uses them as guidelines and it doesn’t provide any

optimization feature. More recently other numeric planners emerged in planning

community (see LPRPG-P [16] or one of the best performer in 2014 IPC [17],

SymBA∗ [18]) which also proved to be very performing, even if less versatile and

appropriate than Colin in our domain.

Numerical planning is a very important task and it allows to solve many real-

world problems. Despite this, as reported in detail in 6, it presents limitations in

many situations like multi-agent domains or domains in which time and temporal

constraints are fundamental. Numerical planning requires in such cases heavy

pre- and post- processing phases, as well as a simulation of time passing and

concurrency.

2.2.3 Temporal Planning

In order to represent and solve more easily domains and problems strictly based

on time and concurrency, temporal planning is a viable alternative to numerical

planning. Temporal planning has been made possible in PDDL by the introduction

of durative actions which, as already shown, have a duration and can be scheduled

at specific time points. The use of this kind of formalism allows to explicitly

consider time in action scheduling, to permit concurrency between them and to

express temporal features such as events occurring at arbitrary time points..

As well as numerical planning a temporal planning instance is analogous to a

classical planning one. Notice that temporal planning doesn’t necessary implies

numerical planning. In fact numerical values can be only considered in terms of
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action durations and scheduling time but a problem may contain only propositional

fluents. However temporal planning is a natural extension of numerical planning

and its purpose is to make planning capabilities closer to real world needs, so we

consider temporal planning starting from numerical planning.

A temporal planning instance is a tuple P = 〈F,A, I,G〉, where F, I, and G are

defined as for numerical planning. The difference is that each action a ∈ A is a

temporal durative action defined as in 2.1.1.3.

A plan for a problem P is not anymore a sequence of actions but rather a set of

time labeled actions Π = {(a1, t1), ..., (an, tn)} where ti (with 1 ≤ i ≤ n) is the

time label associated with action ai and represents its scheduled start time. As

mentioned in 2.1.1.3 every durative action ai has two associated events: startai

and endai , respectively at time points ti and ti + d(ai) (with d(ai) the duration of

action ai) at which preconditions must be satisfied and effects are applied. A plan

Π in temporal planning can also be seen as an event sequence e(Π) that includes

startai and endai for each 1 ≤ i ≤ n and is ordered by the associated times of

events. Notice that because of the concurrency of actions the events associated

to different actions may alternate in the ordered sequence e(Π). If we apply the

effects of events in the order reported in e(Π) starting from the initial state I, we

obtain a sequence of states s1, ..., s2n. Each state si is described by the value of

domain fluents (both propositional and numerical) obtained by the application of

the effect of the subsequence of events in e(Π) from 1 to i − 1. Since each event

in e(Π) is associated to a specific time point, at any time we know the value of

each fluent. Notice that since durative actions also have continuous effects that

are applied in the segment between the start and the end of the action, we also

know at any time the value of the continuously affected fluents.

A plan Π solves a problem P if G holds in s2n, where G is the set of propositional

and numerical goals (as defined for numerical planning) and s2n is the final state

obtained applying the full ordered sequence of action effects in e(Π) starting from

I. A plan is valid if each event ei in e(Π) is applicable in si−1 (with sj the state

obtained applying the ordered sequence of action effects in e(Π) until ej) and

continuous preconditions and effects are satisfied and applicable in the respective

time segments.

Temporal planning is required in order to solve problems in which action concur-

rency is a key point. Because of this it is also a possible approach to multi-agent
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planning. In fact, allowing concurrency, it allows a centralized planning for multi-

agent problems with shared and private resources. The UAV domain is an example

of such domains requiring a cooperation between UAVs in order to observe a set

of targets in specified temporal windows, possibly minimizing the global mission

duration. For these reasons we also considered this kind of modeling in our study.

Temporal planning is a relatively recent introduction in planning competitions.

Despite this many planners have been developed and many approaches to this

complex task have been attempted. As already mentioned, Colin planner, sup-

porting PDDL 2.2, is able to handle temporal planning problems and for this

reason, and because of its versatility, we mainly used it in our tests. Another

planner, based on Colin core, is POPF2 [19] which is a forwards-chaining tempo-

ral planner which incorporates ideas from partial-order planning during the search.

It retains the Colin’s ability to handle domains with linear continuous numeric ef-

fects but it doesn’t fully support ADL: it cannot handle negative preconditions,

disjunctive preconditions, conditional effects etc. Even if POPF2 allows plan op-

timization (while COLIN doesn’t), we preferred to use COLIN which resulted to

have a more stable behavior and supports more PDDL features like ADL and

timed-initial-literals (POPF2 only supports a portion of PDDL 2.1 level 5).

In the latests IPC some other temporal planners emerged, in particular YASHP3

[20] (winner at IPC-2011 and IPC-2014) and TFD [21]. They performed very well

in competitions but they also present some limitation that have led us to prefer

COLIN even if less performing. In particular YASHP3 doesn’t support ADL con-

ditions, numerical state variables and timed-initial literals, as well as continuous

numeric effects, while TFD doesn’t support timed initial literals and continuous

numeric effects. As we’ll see in 5 continuous numeric effects is a necessary require-

ment in order to obtain feasible plans in UAV domain in presence of temporal

constraints on target observation.

2.2.4 Multi-Agent Planning

Multi-agent planning is one of the most recent fronts in automated planning. Be-

cause of the computational cost of the task it has not been explored yet like instead

single-agent planning has been. However in the last few years some approaches

and strategies emerged.
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Multi-agent planning is the problem of planning for a group of agents in order

to achieve goals that single agents couldn’t be able to achieve by themselves, or

at least to achieve them better. A solution to a multiagent planning problem is

a partially ordered plan that as well as in classical planning results in a set of

achieved goals for some of the agents. The main difference is that a plan is not

necessary centralized but it can be created and distributed on each agent which

performs a private planning supported by its private and available actions.

Two approaches are in fact available in order to solve multi-agent problems: a

centralized planning approach and a distributed one. In general we can say dis-

tributed approaches in planning creation are preferable for many reason (e.g. the

maintaining of agents privacy and autonomy, the cost of a centralized systems,

the easiness in re-planning in case of contingencies, etc. [22]). However, despite

individual planning and post-planning coordination phase are a good approach, in

case of problems that require many interactions among agents the coordinations

activities are too expensive.

Some recent study tried to investigate how multi-agent centralized problems can

be automatically encoded to PDDL and solved via temporal planning [23]. This

approach allows to express constraints between concurrent actions through nu-

merical fluents. The work shown that this kind of problem, even if still simplified

in the study, are also representable (as we also did in this thesis) as temporal

planning problems.

An alternative adopted approach in literature is an integrated planning and co-

ordination approach. MAP-POP [24] is an integrated multi-agent planner which

combines planning and coordination through a multi-agent POP-based refinement

planning procedure. It proved to efficiently solves loosely-coupled problems and

also to be competitive when solving problems with a higher coupling level and

cooperation among agents. More recently it has also been presented FMAP [10],

a new planner based of MAP-POP which uses a language based on PDDL 3.1 and

presents a novel approach to integrated MAP in which each agent implements a

forward-chaining POP performing a multi-agent weighted A∗ with a distributed

heuristic based on DTG (Domain Transition Graph). We tested the capabilities

of FMAP on our purposes and we analyzed the limits and the possibilities it pro-

vides. This kind of systems present some practical limitations. It is in fact hard

to represent temporal or numeric information (despite PDDL 3.1 fully supports

them, planner doesn’t) so many natural constraints or features of UAV domain
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are difficult or impossible to define.

It is also worth mentioning some different but related areas of work in multi-agent

planning. A first alternative approach is modeling multi-agent problems directly in

terms of a centralized mixed-integer linear programs. Some MIT works ([25], 26)

shown that in multi-UAV domains this approach behave relatively well considering

heterogeneous vehicles, timing precedence constraints between observations, no-fly

zones and vehicle dynamics, but without considering time windows of observability

of targets. This approach has proved to be a valid alternative in problems with no

particular temporal requirement on target observation (all targets are observable

during the entire mission duration). In this thesis we show that similar results

are obtainable with state-of-art planners and a right modeling of problems, also

including temporal constraints.

Another important and in evolution kind of approach in multi-agent temporal

planning involves CSP (Constraint-satisfaction problems). CSP are used in a great

variety of application areas ([27]) including planning. Certain classes of temporal

planning problems can in fact be addressed recurring to CSP solving techniques,

supported by the SMT (Satisfiability Modulo Theories) which generalizes boolean

satisfiability (SAT) by adding richest theories such as arithmetic, quantifiers or

first-order theories. SMT solvers (such as Z3 [28]) are able to efficiently check

formulas with hundreds of thousand of variables and have proven to be a valid

alternative to solve planning problems. There are also in literature examples of

SAT-based planners (such as TM-LPSAT [29]) which demonstrated that this kind

of approach can be successfully extended to temporal planning problems including

real-valued fluents, exogenous events, atomic and durative actions with numeric

parameters and numerical continuous changes.
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Chapter 3

The class of problems

In this chapter we describe the class of problems we addressed in this thesis. We

adopt an increasing complexity approach in the description. We first describe the

general properties of the class of problems and then we introduce new features

which increases the complexity of the problems.

3.1 The baseline

Let us consider a class of problems characterized by a set of robotic agents R =

R1, R2, ..., Rk which have to explore and monitor a given environment in order to

get information about specified targets. Agents can get observation on a portion

of the environment depending both on the their location and on the characteristics

of the devices of which are equipped. The robotic agents have perceptive abilities

(mainly via observation devices) and can move in the environment but they do

not have manipulation abilities (i.e. they do not alter the environment since their

task concern monitoring/exploration). The robotic agents can perform activities

in concurrency (limited by some constraints).

A set of devices Di = Di
1, , D

i
ni is put on board of the robotic agent Ri. The

devices allow the agent to get information from the environment and each device

has a number of capabilities. In principle the devices can work in parallel, even if

there are some configurations requiring mutual exclusion. At least one device has

to be on board of Ri.
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A robotic agent Ri has an internal status SRi
which models both qualitative aspects

of Ri and the numerical ones (i.e. the numerical value of the resources of Ri).

Resources of an agent Ri are a set ResRi
of consumable resources (e.g. fuel level

or battery charge level) which can be modeled as numerical fluents.

As well as robotic agents each device Di has its own status SDi
which models

both qualitative aspects and the numerical ones (i.e. the numerical value of the

resources of Di). Resources of a device Di are a set ResDi
of consumable resources

(e.g. memory status or battery charge level) which can be modeled as numerical

fluents.

We assume that resources of both agent and devices are partitioned among the

elements of the system, so that there is no shared resource. We also consider time

as a resource and even if it is conceptually a shared resource it doesn’t impose

constraints on shared usage. It is explicitly represented in metric terms and it has

an absolute scale and it is the same for all agents in R and all devices.

The overall task of the robotic agents is to acquire information about the environ-

ment. A robotic agent Ri is able to acquire information just when it is sufficiently

close to the portion of environment it has to observe. For this reason an impor-

tant notion is the one of target which specifies the entity to be observed and some

basic properties of such an entity. A problem therefore specifies a set of targets

T = T1, ..., Tt to be observed by the robotic agents in order to satisfy a goal G.

Two types of targets are considered: Point Targets (POINT) and Line Targets

(LOC). In the former case the target is characterized by one vertex described

by a tuple of coordinates in space. In particular we restricted our space at bi-

dimensional space so a position can be defined as a couple of coordinates. In the

latter case (LOC target) it is characterized by a sequence of vertices defining a

polygonal chain.

The information about the targets to be observed is just part of the request that

the system has to satisfy. In fact, the target specifies just what has to be observed,

but it is also very important to specify how it has to be observed and how long.

For this reasons we define the concept of observation requests ObsReq = 〈tr,md, dv〉
where tr ∈ T specifies the target to be observed, md ∈ R specifies the minimum

duration for the actual observation and dv ∈ D is a parameter specifying the

constraint on the device to be used for the observation. It is quite clear that tr
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represents what has to be observed, dv how t has to be observed and md how long

t has to be observed.

We define OR = (ObsReq1, ..., ObsReqm) ⊆ G as the set of observation requests

to be performed in order to solve a problem and a problem is considered solved

just in case all ObsReqi ∈ OR are achieved.

3.1.1 Agent’s capabilities

In order to perform this complex task, agents have at disposal a set of actions. It is

worth notice that the modelled capabilities of agents abstracts away from their low-

level sensor or motor commands. The complexities of agents movement, engines

power cycle, sensors pointing, data acquisition, etc., witch are obviously important

in a completely accurate representation of a real-world problem are completely

abstracted away by the agent capabilities formulation of our model, and assumed to

be dealt with by low-level control processes. However the adopted abstraction level

allows to define actions for planning purposes oriented to a centralized planning

system of managing and coordination of teams of (possibly heterogeneous) agents

and the low-level controls are demanded to single agents managing.

3.1.1.1 Transfer actions

The main qualitative aspect of an agent Ri concerns its position. For this reason

there are Transfer actions which allow changing the position of Ri. A position is

defined by a couple of coordinate in a bi-dimensional space. A Transfer action is

an action AT = 〈r, ps, pe, ts, d〉, where r ∈ R is the robotic agent which performs

the action, ps ∈ R×R is the initial position of the agent r when it start executing

AT , pe ∈ R × R is the final position of r after the execution of AT , ts ∈ R is the

time point at which AT is scheduled and d ∈ R is the action duration. As all other

actions, a AT action is located in the time line; in particular the actions starts at

time ts and ends at time te = ts + d.

It is worth noting that in a specific domain we could have many variants of transfer

depending on the nature of the robotic agent r. For example if r is a UAV we

could have actions such as TakeOff, Landing, Loiter, etc..
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3.1.1.2 GetInfo actions

Each device Di is characterized by an action GetInfo which allows the agent on

which the device is on board to acquire information on a target. A GetInfo is an

action AM = 〈dv, tr, ts, d〉 where dv ∈ D is the device which performs the action,

tr ∈ T is the target observed, ts ∈ R is the time point at which AM is scheduled

and d ∈ R is the action duration. This action has an impact on Resr (with r

the agent on which the device is on board). The action AM starts at time ts and

ends at time te = ts + d. One typical precondition of such an action concerns

the “proximity” of r to target tr. In order to observe a target, in fact, the agent

has to be within a certain distance from the target itself. This distance reflects

the radius of action of the device, that is the radius within the device is able to

successfully observe the target. It is also worth noting that this condition should

be satisfied for the whole duration of the action. This is a tricky situation because

there is concurrency between agent r and its devices. This implies that satisfaction

of the “proximity” condition depends on the actions concurrently performed by r

(because dv is on board r) so that suitable predicates have to be defined by the

action performed by r and should persist during the action performed by dv.

In order to be scheduled by a planner all action preconditions have to be satisfied.

Each agent’s action specifies not only preconditions on the qualitative aspects of

ps, but also on the Resr (the agent’s resources) and on time, as well as each device’s

action specifies precondition both on qualitative and quantitative aspects.

It is worth noting that in our modeling each agent, as well as each device, is

able to only perform one action at a time. This simplification is allowed by the

chosen level of abstraction which hides logistics and allows to only consider one

high level action at a time for each agent or device. Despite this an agent and

its devices can concurrently execute their actions because they are considered as

different entities, even if highly correlated. This allow to a team of robotic agents

to concurrently act in the environment and, for each robotic agent Ri, it allows to

the suite of devices on board to Ri to concurrently perform GetInfo actions while

Ri is moving in the environment.
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3.1.2 The planning problem

In order to define the planning problem to be solved we have to specify the goal

and the initial state.

3.1.2.1 Goal

As already mentioned in the specification of the problem we have a set of ob-

servation requests OR (which express temporal constraints and devices for the

observation of a target) that must be satisfied.

We have also other temporal constraints that the entire plan (mission) must satisfy.

In particular we can define these constraints as the tuple MTC = 〈te, tl, dmin, dmax〉
where MTC means Mission Temporal Constraints and te specifies the earliest time

when the mission can start, tl specifies the latest time when the mission can end,

dmin represents the minimum duration of the actual mission and dmax represents

the max duration of the actual mission.

Furthermore there is also a set of resource constraints RC = (RCR, RCD) where

RCR = (RCR
1 , ...RCR

k ) are the robotic agents resource constraints (with RCR
i

the set of resource constraints relative to consumable resources (e.g. fuel in

the tank, battery power, etc.) of agent Ri and k the number of agents) and

RCD = (RCD
1 , ...RCD

d ) are the devices resource constraints (with RCD
i the set

of resource constraints relative to consumable resources (e.g. available memory,

battery power, etc.) of device Di. All resources must be managed in a way that

its amount results greater than a certain threshold at any given time. In fact each

action performed consumes an amount of these resources, possibly proportional to

its duration, e.g. a transfer consumes fuel in proportion both to the distance and

the speed of the agent.

We can finally define the goal as the set G = (OR,MTC,RC) where OR, MTC

and RC are defined as above.
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3.1.2.2 Initial state

The initial global status I for this class of problems details the time windows

during which each property of the domain’s objects holds as well as the initial

value of the numerical variables.

Let S and N respectively be the set of predicates (propositional variables) and

the set of functions (numerical variables) defined in the domain. Let also be

H = (H1, ..., Hh) a set of tuples, where Hi is a tuple 〈p, ts, te〉 with p ∈ S a

propositional variable and [ts, te] (with ts ∈ R+ and te ∈ R+ ∪ {+∞}) a definition

of an interval where p holds. Notice that te = +∞ means that the interval is open.

We can define the initial state as the couple I = (H,NI) where H is the set

defined above and NI is an initial assignment of numerical values to the numerical

variables in N .

Notice that as well as the values of numerical variables, the truth value of a

propositional fluents may change over time as a result of the application of an

action. Notice also that the value of some numerical variables will never change

because they represents (as well as the validity intervals of propositional variables)

exogenous characteristics of the environment (e.g. the consumption rate of an

agent).

Some of the variables that could be used for describing the domain are

• Robotic agents information. They concern agents qualitative and numerical

characteristics like initial position, cruise speed, consumption rate, etc.

• Devices information. They concern devices qualitative and numerical charac-

teristics like device status or modality, maximum available memory, battery

level, etc.

• Inter-agent relations information. They concern information of devices loaded

on board the agents.

• Targets and observation requests information. They concern information

about the target geometries, the position in the environment, temporal in-

formation (required minimum duration of observation) and information on

devices required for the observation.
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• Environment information. They concern information like the size of the

environment, the distance between objects, etc.

Notice that these pieces of information describe the baseline class of problems.

More information will be added in the following sections and a detailed description

of the specific variables used in our modeling will be reported in chapters 6 and 5

according to the planning strategy adopted and the encoding phase of the problem.

3.1.2.3 Solution

A solution for the class of problems above defined is a plan Π that ends in a final

state sn in which all goals in G are satisfied. A plan is a set of temporally located

actions Π = (A1, ..., An) and we consider it a valid plan if:

• All constraints among observation requests ∈ OR are satisfied. In particular

there is exactly one GetInfo action for each observation request, that is for

each ObsReqi = 〈tri,mdi, dvi〉 there is an action AM
k = 〈dvk, trk, tsk,mdk〉

such that dvk matches dvi, trk matches tri and mdk is >= mdi.

• The plan satisfies all temporal constraints in MTC (as defined above). In

particular for each action Ai ∈ Π, Ai starts after te and it ends before tl.

Furthermore the total plan duration is between dmin and dmax.

• The plan satisfies all resources constraints in RC (as defined above). In

particular for each set of constraints RCi ∈ RC the amount of each of them

results greater than a certain threshold at any given time of the mission.

• The preconditions of the actions are satisfied by the global state of the system

in which they are applied. With an opportune modeling of actions it also

implies that the plan satisfies all resources constraints in RC.

• The mutual exclusion constraints among actions are satisfied.

3.2 UAV extension

A first extension of the baseline class of problems is the instantiation of robotic

agents with UAV agents.
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The use of UAVs instead of simple robotic agents leads to an increase of the

problem complexity. In fact it both implies additional agents capabilities and a

series of additional constraints that a solution must respect. Therefore we have

to extend the above defined agents capabilities as well as the planning problem

definition.

A UAV is obviously a more difficult to manage entity than a generic robotic agent.

Omitting again the specific logistics (demanded to a lower level control system)

there is a series of conditions we have to take into account in order to build a

consistent plan for a team (fleet) of UAVs.

As well as a generic robotic agent, each UAV Ri is equipped with a set of devices

Di = (Di
1, ..., D

i
n) which allows it to get information from the environment. In

particular the devices are sensors that can be of various types (Electro Optical,

Radar, Hyperspectral, Lidar, etc.) and the information from the environment

typically concern specific targets for surveillance purposes (e.g. areas prone to

natural disaster, etc.). A UAV is able to get information of a target by flying at

a certain altitude and within a certain distance from the target depending on the

sensor to be used. Each UAV is able to load on board a limited number of sensors:

typically two or three on MALE (Medium Altitude Long Endurance) or MAME

(Medium Altitude Medium Endurance) UAVs.

Notice that talking about UAV’s class of problems we’ll refer to GetInfo actions as

monitoring or observation actions. So a monitoring action oi is a GetInfo action

performed in order to accomplish an observation request ORi ∈ OR.

3.2.1 Agent’s capabilities extension

As well as a generic robotic agent a UAV requires Transfer actions to move around

in the environment. As already mentioned a UAV requires different actions of this

type in order to handle different moving situations.

In particular, beside the already defined Transfer action, a TakeOff action allows

the UAV to take off from the airport where it is initially located and to reach its

cruising altitude.

A Landing action allows the UAV to land at the airport. Typically the landing

airport correspond with the departure one for logistics reasons.
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Some Loiter actions allow the UAV to execute a particular flight pattern in order

to maintain its position within a certain area. This kind of action is useful both

in case the UAV needs to wait a certain amount of time before to proceed to the

next task and in case the UAV must stay on a target for a certain amount of time

(e.g. the minimum duration of observation) in order to accomplish a ObsReq.

Each of these action is a specialization of the Transfer action and it is similarly

defined. Notice that for the TakeOff and Landing actions, ps and pe are not

variables but they are defined a priori. Also notice that ps of the TakeOff action

and pe of Landing action represents points on ground while pe and ps (respectively

of TakeOff and Landing), as well as all the points between these two actions, are

up in the air.

It is important notice that each transfer action has not only an impact in terms

of changing the position of the UAV but also in terms of resources consumption

and time spending. This is one of the reason why it is important to model them.

An important aspect of agents capabilities concerns the necessity to continuously

perform some task. Unlike a generic robotic agent which can simply do nothing

for a certain amount of time (possibly without consuming resources), it is not

possible for a UAV agent. In fact also ”doing nothing” requires a certain amount

of consumable resources (e.g. fuel or battery charge) ad therefore has a potentially

significant impact on the final plan. Furthermore ”doing nothing”, meant as hover,

as already mentioned is not a kind of action that all UAVs are able to perform.

In particular UAVs that aren’t VTOL (Vertical Take-off and Landing), such as

MAME or MALE UAVs, are not able to perform it. As already mentioned, this

introduces a significant complexity level in some practical PDDL problem types

of modeling, especially in temporal planning where it can only explicitly modeled

using requirements not supported by all planners.

3.2.2 The planning problem extension

The planning problem definition for the UAV class of problems extends the baseline

definition. In particular it requires some additional goals as well as new constraints

and variables.
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3.2.2.1 Goal

We can mainly introduce a new set of goals that must be satisfied by the final

plan, concerning the UAVs positions. We can define a set L = (L1, ..., Lk) (with k

the number of UAVs in the problem) where Li is a goal which requires the UAV

Ri is landed in the final state.

We can then define the goal as the set G = (OR,MTC,RC,L) where OR, MTC

and RC are defined as in baseline class of problem definition and L is the set of

goals here specified.

3.2.2.2 Initial state

The initial state can be defined in the same way of the baseline class of problems.

The main difference is that some additional variables are necessary for describing

the domain.

In particular additional pieces of information about airports have to be introduced,

concerning the initial and final positions of the UAVs. 1

3.2.2.3 Solution

The solution, as well as the initial state, can be defined in the same way of the

baseline class of problems as a plan Π = (A1, ..., An) where each Ai is a temporally

located action.

In order to consider Π a valid plan it has to satisfies some more constraints than

a baseline plan. In particular:

• In the final state sn all UAVs must be landed.

• A UAV executes exactly one TakeOff and one Landing actions.

1Notice that in order to carefully model the domain it is also useful to provide information
about the take off and landing of a UAV. In particular it is useful to define the position of the
UAV after its take off and the position from which it can start landing at a certain airport.
These information depend both on the airport’s structure and on the UAV’s type (e.g. a MAME
UAV requires a different type of landing than a Micro-Uav). For this reason also more agents
information are required, such as the time needed by a UAV to take off or land, temporal and
spatial information on loiter operations, etc.
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• A UAV that took off covers at least one target observation.

• All the actions of a UAV must meet each others. That is no holes between

the actions of a UAV are allowed.

3.3 Temporal constraints between targets obser-

vations

A further extension of the class of problems concerns the introduction of a new

set of temporal constraints among pairs of ObsReq. Because of the temporal

dimension, the ObsReq may not be completely independent on each other. In

particular we introduce the capability of specifying a set of temporal constraints

among pairs of observation requests, based on Allen’s interval algebra predicates

([30]).

Notice that for simplicity in the following we refer to observations. The specified

constraints concern the specific GetInfo action oi that have to be performed in

order to satisfy the observation request ORi ∈ OR. These temporal constraints

have the form:

• After(o1, o2, t1, t2). I.e. the observation o1 ∈ Π has to start after the con-

clusion of the observation o2 ∈ Π and the temporal gap should be included

in [t1, t2] with t1 ≤ t2 and t1 ∈ R+ and t2 ∈ R+ ∪ {+∞}.

• Before(o1, o2, t1, t2). I.e. the observation o1 ∈ Π has to finish before the

start of the observation o2 ∈ Π and the temporal gap should be included in

[t1, t2] with t1 ≤ t2 and t1 ∈ R+ and t2 ∈ R+ ∪ {+∞}.

• Overlap(o1, o2, d). I.e. the observations o1 ∈ Π and o2 ∈ Π have to be per-

formed in the same temporal interval and the duration of this joint activity

must last at minimum d with d ∈ R+.

• Equal(o1, o2, d). I.e. the observations o1 ∈ Π and o2 ∈ Π have to be per-

formed in the same temporal interval and the durations of the two action

must not differ by more than d with d ∈ R+. Notice that d is a flexibility

parameter which allows to modeling realistic small time intervals of synchro-

nization between observation performed by different agents.
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It is worth noting that this extension leads to a significant increase of the problem

complexity. In particular a temporal constraint between two observations that

must be performed by different agents requires a strong coordination between

them. In order to satisfy such type of constraints agents must both cooperate

with each other and opportunely schedule their action to perform the constrained

observation in the right time interval. It is clear that it is not a trivial problem.

Because we adopted a centralized planning approach it is the centralized planner

that must face this difficulty. For this reason it has no impact on agents capabilities

in our modeling. Conversely it affects the planning problem definition.

3.3.1 The planning problem extension

The introduction of temporal constraints between targets observations leads on

goal and consequently on the solution of the problem.

3.3.1.1 Goal

We have to introduce a new set of goals that must be satisfied by the final plan, con-

cerning the described temporal constraints. We can define a set M = (M1, ...,Mm)

where Mi is a goal of the form above specified. It temporally constraints two tar-

gets observations.

We can then define the goal G = (OR,MTC,RC, [L, ]M) where OR, MTC, RC

are defined as in the baseline class of problems, L is the set of goals added in UAVs

class of problems extension and it is present only if that is the class of problems

considered, and M is the set of goals here specified.

3.3.1.2 Solution

The solution can be defined in the same way of the baseline class of problems as

a plan Π = (A1, ..., An) where each Ai is a temporally located action.

In order to consider Π a valid plan it has to satisfy some more constraints than

a baseline plan (or a plan for the UAVs extension). In particular all the goals

specified in M have to be satisfied by the final plan, that is for each Mi ∈ M

constraining two target observations oi1 and oi2, Π must contain two observation
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actions AM
j and AM

k such that their temporal location satisfies the constraint

expressed by Mi (e.g. for a Before(o1, o2, t1, t2) constraint, Π must contain two

actions AM
j and AM

k respectively related to o1 and o2 such that endAM
j
< startAM

k

and t1 ≤ (startAM
k
− endAM

j
) ≤ t2).

3.4 Time windows on targets observation

Another important extension of the class of problems concerns temporal con-

straints on targets observation in terms of time windows of observability.

Until now we considered the targets as observables during the entire time of the

mission. Now we aim to reduce the observability of targets at limited time win-

dows.

At this purpose we introduce a set of temporal requirements that specifies the

time windows within targets are observable. In particular we define a concept of

target observability window Wi = (W 1
i , ...,W

w
i ) as a set of disjunct observability

windows W j
i that define time intervals [eji , l

j
i ] in which target Ti is observable.

eji ∈ R specifies the earliest time when Ti is observable and lji ∈ R+ ∪ {+∞}
specifies the latest time.

If |Wi| = 1 there is only one time windows in which the observations on target

Ti can be acquired. But it is also possible to define more than one observability

windows. Notice that they must be disjunct so if an interval ITk has no latest time

constraint (latest time with +∞ value) there must not be any other observability

window starting after ITk.

As well as the introduction of temporal constraints between targets observations,

the introduction of time windows on targets observation leads to a significant

increase of problem complexity. In fact it requires the planner to schedule agents

observation actions within the observability windows. This has an impact both on

the scheduling of actions which are required by the observation (e.g. a Transfer

action which takes the agent near the target) and on the following actions whose

scheduling is affected by the previous actions.
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3.4.1 The planning problem extension

The introduction of such temporal constraints has an impact on goals, initial state

and solution definition. Therefore also in this case we need to extend the definition

of the planning problem.

3.4.1.1 Goal

We have to introduce a new set of goals that must be satisfied by the final plan, con-

cerning the specified temporal constraints. We can define a set W = (W1, ...,W|T |)

where Wi is a goal of the form above described which specifies within what time

intervals a target can be observed and |T | is the number of targets.

We can then define the goal G = (OR,MTC,RC, [L, ][M, ]W ) where OR, MTC,

RC are defined as in the baseline class of problems, L is the set of goals added in

UAVs class of problems extension and it is present only if that is the class of prob-

lems considered, M is the set of goals which must be introduced in order to extend

the class of problems with temporal constraints between targets observations and

W is the set of goals here specified.

3.4.1.2 Initial state

We also need to extend the baseline definition of the initial state of the problem.

It is necessary to introduce the new information on targets observability windows.

In particular for each target Ti ∈ T we have to specify all time intervals W j
i ∈ Wi

in which it is observable.

In order to represent this constraints in a PDDL problem we can use timed initial

literals which allow to easily model this kind of information. Notice that if an

interval has no limit on latest time of observation it is sufficient to specify the

earliest time of the interval.

This information can be then used as additional precondition in GetInfo observa-

tion actions in order to allow a target observation only in the specified observability

windows and consequently satify the goals.
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3.4.1.3 Solution

The solution can be defined in the same way of the baseline class of problems as

a plan Π = (A1, ..., An) where each Ai is a temporally located action.

In order to consider Π a valid plan it must satisfy some more constraints than a

baseline plan (or a plan for one of the described extensions). In particular all the

required observation requests in OR must be satisfied during a time window in

which the target to be observed is observable.

3.5 Target observations assignment

Parallel to the reported extensions of the baseline class of problems there is another

important aspect to take into account.

Each described extension, in fact, can be specialized in two different ways con-

cerning the assignment of the observation requests to the agents.

A first definition concerns a priori assignment of the targets to the agents involved

in the planning problem. For each ObsReqi ∈ OR it is introduced an additional

constraint which forces the assignment of ObsReqi to a specific agent (chosen from

those in the problem). This model requires additional information concerning the

assignments both in the initial state definition and in the goals and obviously it

has an impact also on the validity of a plan (similarly to the already described

extensions).

A second definition, instead doesn’t specify any assignment of observations to

agents, leaving complete autonomy to the planner in order to satisfy the problem.

Obviously it entails an increase of problem complexity because of the wider set of

agents usable to satisfy the observation requests.

It is worth noting that in the former case it is required a human intervention in

order to assign the observations to the agents. This implies that the set of valid

plans for a problem with assigned target observations is smaller than the set of

valid plans for the same problem without assignments. This also implies that in

some cases there may not be a solution for the first kind of problem because of

bad assignments but there may exist a solution with a different assignment.
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A further intermediate extension of this type may lead to agents capabilities in

terms of subsets of OR that each agent can satisfy. This kind of extension gives

only a partial autonomy to the planner in assigning observations to agents and

requires only a intermediate human intervention in order to specify which agents

are able (or allowed) to satisfy the observation requests.
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Chapter 4

The architecture

In the previous chapter we defined the class of problems we aim to face in this

thesis. Because of its complexity, in order to model it and take into account all its

characteristics it is not possible a direct encoding of the problem requirements into

a PDDL implementation (e.g. temporal constraints cannot be directly specified

in a goal state). It is necessary a translation process starting from the general

problem specification to the PDDL implementation (encoding process), as well as

a translation from the planner solution to a human easy to read representation

(decoding process). Notice that, in order to solve the class of problems, we decided

to exploit state-of-art temporal and numerical planners instead of building a new

planner or extending the existing ones. This choice is mainly due to the fact that

state-of-art planners implementation of algorithms is complex and often already

optimized. Therefore building a new temporal planner which is competitive with

the state-of-art planners would be a task that cannot be done in the time required

for a thesis of master degree.

In this chapter we present the adopted architecture which allows the translations

and planning for the class of problems according to the choice of using a PDDL

2.2 formalism (see 2.1.2 for more details).

Fig. 4.1 reports a flowchart representing the entire translation and planning pro-

cess. Starting from a general definition of the problem and the requirements (which

is the input of the entire process specified by the user), the encoding process trans-

lates them in the PDDL formalism. The process generates two files which provide

a problem description and a domain model in the PDDL syntax. The files are then

feed to a general purpose planner (able to deal with PDDL 2.1 and PDDL 2.2) in
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Figure 4.1: A graphical representation of the translation process.

order to find a solution for the problem. The decoding process finally translates

the planner solution in a readable output to the user.

4.1 User input

The user provides in input a formal high level description of the problem. The

description defines the elements involved in the problem and the constraints that

must be met by the final plan. In particular it specifies a representation of a subset

of information reported in the previous chapter in goal and initial state sections,

according to the adopted extension of the class of problems. Therefore some pieces

of the information it defines are:

• The set of robotic agents that must be involved in the problem (UAVs in

case of UAV extension of the class of problems).

• The set of targets that must be observed and the requirements on their

observation (i.e. the required minimum durations of observations and the

type of devices to be used for the observations). In case one of the extensions

of the class of problems is adopted it may also define time windows within

the observations has to be done and/or temporal constraints between pairs

of target observations.
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• Temporal constraints for the entire plan: the time window within the plan

has to be performed (i.e. earliest and latest time for the mission) and the

maximum duration.

• The assignment of the observation requests to the agents. Notice that this

information, if provided, is the result of some choices of a human operator.

However we are assuming that the assignments are consistent with the actual

ability of the agents to observe the target assigned with the devices loaded on

board in the time frame of the mission. Consistency controls are demanded

to a higher level structure which is beyond the purpose of this thesis.

4.2 Encoding

The encoding process concerns the definition of the initial state, the actions

schema, and the goal state, in the chosen PDDL formalism.

The following chapters will describe in detail the encoding phase according to the

planning model (i.e. temporal planning or numerical planning). This process, in

fact, highly depends on the chosen model. The representation of some concepts

or requirements differs from one model to the other because of the different for-

malisms and the limits of the models. A simple example of what said concerns

time representation and management: while in temporal planning planners di-

rectly handle time and actions are automatically located in time, in numerical

planning it is necessary to explicitly represent time. This has a significant impact

both on actions schema definition (because it requires more preconditions and ef-

fects concerning the time management) and on the definition of fluents in domain

and their initialization in initial state, as well as a different modeling of some of

the requirements (such as temporal constraints between targets or time windows

on targets observations). For these reasons we postpone to the following chapters

the specific encoding process. In particular in chapter 5 we show how to encode

the problems in temporal planning, while in 6 we show how to do it in numerical

planning.

It is worth noting that beside the mere translation of user information and require-

ments in the planning model formalism, the encoding phase also introduce all the

information that are necessary to correctly define the domain and the problem and

that are beyond the user interest and knowledge. In particular with the support
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of an internal knowledge base (DB in Fig. 4.1) the system also provides to the

planner (through the domain and the problem files):

• The required agents logistic information, such as their initial position, cruise

speed, consumption rate, etc., as well as the suite of devices loaded on board.

• The target geometries and their position in the environment.

• Information on the environment, such as its size, the distance between ob-

jects, etc.

• Predicates and functions of support to the planning (e.g. status variables

for agents or boolean variables which enable/disable actions)

This kind of information is necessary in order to carefully and correctly define the

domain and the problem but they are hidden from the user because they only

depend on domain and planning model.

Encoding, according with the chosen planning model, also performs a series of

simplifications on objects representation in order to simplify the planning.

Notice that typically the domain is not influenced by the user input and for a

specific class of problems it is unique for each planning model. Therefore the do-

main requires an encoding (and that’s the reason in fig. 4.1 it is between encoding

phase and the planner as well as the problem) but because it depends only on the

class of problems and on the planning model in real usage it is encoded only once

and directly fed to the planner when required. On the other hand it is also worth

noting that consider the PDDL domain as independent from the problems is not

realistic. Actions schema, objects, predicates and functions definition, as we’ll

see in the following chapters, strictly depend on the type of problems. Problem

constraints and requirements in fact deeply influence the set of necessary fluents

and the preconditions and effects of actions.

4.3 Planning

The encoding process generates two PDDL files representing the domain and the

problem. These files are given as input to a domain independent planner to search

for a solution.
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The choice of planner strictly depends on the planning model used in encoding

phase. As mentioned in chapter 2 not all planners support the totality of features

of the PDDL extensions. Therefore it is necessary to employ a specific planner

according to the choices made during the encoding phase.

Planning phase aims at finding, if possible, a solution to the specified problem. A

solution may be, depending on the adopted planner, optimal or sub-optimal. It is

reported according to a formalism which is characteristic of the planner and it is

not particularly user-friendly (especially in case of multi-agent problems because

actions are mixed together in the plan).

However we can distinguish two kinds of formalisms adopted by almost all planners

and depending on the planning model.

In case of temporal planning a plan is presented by the planner as a sequence of

actions in the following format:

t : (action p1 ... pn) [d]

where t is the starting time of the action (with respect to the zero time of the

problem), action is the name of the action, p1 ... pn are the action’s parameters

and d is the duration of the action, expressed in the unit of time implicitly chosen

while initializing fluents or timed initial literals in the initial state. An example of

action may be the following (in a UAV domain):

10.000 : (take off uav1) [240]

It states that the uav1 is scheduled to take off at time point (second) 10 and the

duration of the take off action is 240 seconds. Notice that the actions in the

plan are ordered by their starting time.

In case of numerical planning, instead, a plan is presented as a sequence of actions

in the following format:

n : (action p1 ... pn)

where n is a numerical value representing the order of the action in the total or-

dered plan (it gives an order between actions in the sequence but this information

is not particularly useful. The order in fact corresponds to the order of the ac-

tions in the sequence), action is the name of the action, p1 ... pn are the action’s

parameters. An example of action may be the following (in a UAV domain):

1 : (take off uav1)

It states that the uav1 is planned to perform as first action a take off. No-

tice that in this case the solution provided by the planner is less clear than the
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temporal planning one in terms of temporal location of the actions. In fact no in-

formation is provided about duration or starting time of the actions. This implies

that, especially in case of multi-agent plans, it is not easy to understand where

concurrent actions are temporally located. As we’ll see in chapter 6 it has signif-

icant consequences in terms of both the architecture and domain’s elements and

actions required by the numerical model. Concurrency, in fact, is a key aspect in

a multi-agent system and it is present both between different robotic agents and

between a robotic agent and the on-board devices and also between the devices

themselves. Without information in the final plan about the temporal location

of the actions it is necessary to develop strategies to successfully handle concur-

rency aspects. Some of these aspects (such as concurrency between robotic agents)

must be simulated, while other concurrencies can be simplified by an abstraction

on actions (e.g. by creating a joint action which encloses a transfer action of a

robotic agent and a monitoring action performed by a device mounted on board).

In chapter 6 we will describe in detail the modeling solutions needed to address

these problems.

4.4 Decoding and output

The decoding of the solution can be performed if the planning ends up successfully.

This procedure depends on the output of the planner and in particular it depends,

as above reported, on the chosen planning model, because it affects the solution

format.

This process allows to translate the planner solution in a representation easy to

read by a human. The output of this translation can be of various types (e.g.

text format, Gantt diagrams representing the scheduling, route of the agents on a

map) according to the needs. For some examples of decoding see 7.3.

It is worth noting that actions (both in temporal and in numerical planning) are

characterized (among other things) by a duration. However, as already mentioned

in 4.3, while temporal planning solutions easily allow to temporally locate the

scheduled actions because they are temporally annotated in the plan, decoding in

numerical planning instead is much more complex. Because of the lack of temporal

information in numerical plans, decoding requires a complex underlying structure

which preserves information from the encoding phase and exploits them during
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decoding. We’ll describe in detail the process in the following chapters according

to the planning model.

47





Chapter 5

Temporal planning

In this chapter we present how to deal with the encoding of the class of problems

(and its extensions) described in chapter 3 using a temporal planning model. We

describe how to encode the high level description of problems and requirements in

PDDL 2.2 formalism. The PDDL 2.2 extension is a requirement to exploit both

durative actions and, when needed, timed initial literals features.

Notice that encoding phase doesn’t only performs a translation of the high level

problems’ requirements and of the information required by the planners into a

PDDL formalism. This process also executes a series of important abstractions

and simplifications which facilitate the planning phase. For instance we encode a

LOC target which is described by a sequence of waypoints with only two points:

the initial and final ones of the polygonal chain which describes the target. In order

to maintain the consistency of LOC target information, the time required by the

robotic agents to observe a LOC target (as well as the other resources required or

the distance between the two points representing the LOC) is calculated on the

basis of the actual LOC shape which, however, is hidden to the planner. Modeling

only the relevant points for the planning allows us to abstract from the effective

representation of points in space (through coordinates) and to simplify the entire

planning process reducing the problems’ complexity.

It is worth noting that this kind of abstraction is mainly adopted for reducing

the problems’ complexity but the information hidden to the planner are not lost

w.r.t. both what is considered during planning (targets’ shapes information are all

implicitly expressed through the initialization of some numerical fluents, such as

time-required which expresses the time required to observe a target and, in case
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of LOC targets, is initialized by taking into account of the actual LOC shape) and

also what can be expressed by the final plan (during decoding phase it is possible

to retrieve the information stored into the database in order to consistently enrich

the plans produced by planners).

The work of knowledge engineering involving the reported abstractions and simpli-

fications implies a significant effort in encoding and decoding phases. It sometimes

implies a modeling that is not immediate to be read in all of its aspects because of

the pre-calculated information. However a representation of this type is necessary

in order to be able to successfully employ general purpose state-of-art planners. In

fact complexity of the problems grows proportionally to the number of features we

represent and the majority of state-of-art planners is not able to handle a quantity

of elements that also includes a detailed space representation. In 5.3 we’ll show

that a multitude of fluents (and in particular numerical fluents) are required even

in the simple running example and with the described abstractions.

In describing the modeling, as well as we have done in the definition of the class

of problems, we initially specify how to model the baseline features and then we

introduce the additional constraints.

5.1 Example of problem and requirements

In order to more easily describe the modeling, in the rest of the chapter we’ll

take advantage of a simple example of multi-agent problem which requires all the

features of the class of problems. We’ll also use the same example in chapter 6 to

describe how to encode it with a numerical planning model.

Let us suppose we have a set of two robotic agents R = (R1, R2) and a set of

two devices D = (D1, D2). The agent R1 is equipped with device D1 and agent

R2 with device D2. The problem we consider concerns four observation requests

about a set of three point targets T = (T1, T2, T3). The observation requests are

the following:

• ObsReq1 requires that target T1 must be observed with device D1 for a

minimum duration of 30 seconds.

• ObsReq2 requires that target T2 must be observed with device D1 for a

minimum duration of 60 seconds.
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• ObsReq3 requires that target T1 must be observed with device D2 for a

minimum duration of 15 seconds.

• ObsReq4 requires that target T3 must be observed with device D2 for a

minimum duration of 180 seconds.

Notice that ObsReq1 and ObsReq3 concern the same target T1 but they require

to observe it with different sensors and for a different duration. The observations

have to be performed in a wide temporal window of three hours (10800 seconds).

The problem also specifies a temporal constraint Before(ObsReq1, ObsReq3, 1,+∞)

which specifies that the GetInfo action covering the observation request ObsReq3

must start at least one second after the end of the GetInfo action covering the

observation request ObsReq1.

Finally there is also a set of temporal constraints on target observations. In

particular:

• T1 is observable only in the interval [0, 3000] (values are expressed in sec-

onds).

• T2 is always observable during the mission temporal window (interval [0,+∞]).

• T3 is observable both in the interval [0, 1500] and in the interval [4500, 8000].

5.2 Encoding the baseline problem features

Listing 5.1 defines the four types of objects describing a taxonomy of the elements

involved in the class of problems we aim to encode.

1 ; ; domain f i l e

2 ( : types

3 Agent Device Target Site2D − ob j e c t

4 Point − Target )

Listing 5.1: The definition of PDDL types for the baseline class of problems

in temporal planning.

Notice that the specific objects of a problem are instead defined in the problem

file (see Listing5.2).
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1 ; ; problem f i l e

2 ( : objects

3 R 1 R 2 − Agent

4 D 1 D 2 − Device

5 T 1 1 T 2 2 T 3 1 T 4 3 − Point

6 L1 L2 L3 L4 − Site2D )

Listing 5.2: The definition of PDDL objects for the instance of problem de-

scribed in section 5.1.

Site2D type represents the locations involved in the problem.

Before continuing the description of the types of objects involved in the domain, it

is worth noting that, as we mentioned in this chapter’s introduction, in modeling

the class of problems we need a series of assumptions on the domain. First of all

we are assuming agents only move by using straight line path. This is an approx-

imation which is operable and adopted especially in UAV domain ([31]), however

for planning purpose it can be applied also to generic robotic agents. In fact for

each couple of points (Site2D) we calculate in the current encoding phase their

distance and we give this information to the planner in the initial state through

the initialization of a constant numeric fluent

(= ( Distance2D ? l 1 ? l 2 ) ?m)

where ?l1 and ?l2 are two Site2D and ?m ∈ R+ is the distance between the two

points. Pre-calculating the distances allows to hide to the planner the details of

the path between the points and it can be simply considered as a straight line

during the planning.

Notice that this also allows to simplify the space representation only to the points

which represent target vertices or points related to other objects in domain (such

as the starting position of the robotic agents), ignoring the rest of points in space.

This representation is also supported by the fact that in order to observe a target

we consider sufficient to reach its location and ”stay on it” for a certain amount

of time. We are in fact supposing that once a robotic agents arrives within a

certain radius from the target (radius depending both on robotic agent and on

the target), the agent is able to observe it. This assumption is also appropriate in

UAV domain assuming the UAV is able to perform a lower level loiter action which

maintains it over the target. Modeling only the relevant points for the planning
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allows us to abstract from the effective representation of points in space (through

coordinates) and to simply mapping points to PDDL objects (see row 6 in Listing

5.2). We can apply this abstraction also to the representation of LOC targets: as

reported in the introduction of this chapter, we can describe them in PDDL with

only two points representing the initial and final points of the polygonal chain

which describes the LOC.

Despite a modeling without abstractions and works of knowledge engineering such

as those reported would be clearer and it would require less effort in encoding and

decoding phases, as we already mentioned they are necessary in order to be able

to successfully employ the general purpose state-of-art planners otherwise too less

efficient.

Agent and Device types allow to represent respectively robotic agents and devices.

The main qualitative aspects of a robotic agent concern its initial position and the

set of devices loaded on board. These features can be modeled via two PDDL

predicates defined in the initial state of the problem:

( c u r r e n t s i t e ? r ? l )

( loaded on board ? r ?d)

where ?r is a variable representing a robotic agent (type Agent), ?l a variable of

type Site2D representing the initial location of ?r, and ?d a device (type Device).

The current site predicate allows to define the initial position of a robotic agent

in the space (and it is updated during planning in order to keep the current

position), while the loaded on board predicate is a constant fluent defining the

association between a robotic agent and a device loaded on board.

For each numerical resources ResRi
of the agent Ri we can then define a numerical

fluent and initialize it in initial state of the problem. For instance we can model

the fuel level of a robotic agent or the time it requires to take a unit of space, with

the functions

(= ( Fuel−Level ? r ) ?n)

(= (Time−unit−d i s t anc e ? r ) ?m)
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where ?r is a variable representing a robotic agent (type Agent), ?n ∈ R+ is the

initial fuel level and ?m ∈ R+ is the time required by ?r to take a unit of space (it

is calculated as the inverse of the cruise speed of the agent: 1
cruise speed(r)

).

Target is a type that represents a combination of a ObsReq and the related Target.

Because of the close connection between the two concepts and in order to simplify

the definition of actions schema we decided to merge them. Specifically we have as

many objects of this type as observation requests in the problem. In fact for each

target Ti in the problem there must be at least one ObsReq and all observation

requests concern exactly one Target. For instance notice that in our example both

ObsReq1 and ObsReq3 concern the same target T1. Merging observation requests

and targets in a unique object we obtain two Target objects corresponding to

the pairs 〈ObsReq1, T1〉 and 〈ObsReq3, T1〉 and this representation simplify the

modeling of both actions schema and goals. In fact we can easily represent both

targets and observation requests properties exploiting the same object.

Notice also that the above described representation of Target objects as pairs

〈ObsReq, Target〉 allows an immediate definition of new temporal constraints. In

particular the concept of temporal windows of observation of a target (described

in 3.4) can be directly extended to express also temporal windows in which the

observation is required. For instance it could be required in a mission an observa-

tion of a target Ti in a specific temporal window (e.g. between the 8 am and 8.30

am) and another observation of Ti in a different temporal window (e.g. between

9.30 am and 10 am) while Ti is observable within a third set of time windows. The

observability windows defined for a Target can then be easily used to express the

intersection between the time windows in which the observation task is required

and the time windows in which the related target is observable.

Some Target properties can be modeled as follow:

; ; t a r g e t p r o p e r t i e s

( s i t e t a r g e t ? l ? t )

; ; o b s e r va t i on r e que s t p r o p e r t i e s

(= (Time−min−obs ? t ) ?m)

( to obs e rve ? t ?d)

where ?l is a location (object of type Site2D), t is a pair 〈ObsReq, Target〉 of

type Target, ?m ∈ R+ is the requested minimum duration of observation and
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?d is a Device. The predicate site target allows to define the point in space

at which a target is located. Time-min-obs is a function which allows to define

the requirement on the minimum duration of observation of a target. Finally the

predicate to observe specifies the device to use in target observation.

Listing 5.1 also reports another type Point that is a subtype of the type Target.

As already mentioned, while Point targets are described only by one Site2D, LOC

targets are described by two points which are the initial and final points of the

polygonal chain.

In this section we described the elements that allow us to encode the information

concerning all the objects in our problems. More predicates and functions of

support for the planning and for the modeling of the problems features are defined

below.

5.2.1 Encoding the action model

As already mentioned, temporal planning exploits the durative actions formalism

of PDDL 2.1 to devise a particular schema of action that can be temporally con-

strained both in its scheduling times and duration. In this section we describe

how to model the actions schema of the two main concurrent agent types involved

in our class of problems: robotic agents and devices. In particular robotic agents

need a transfer action which allows them to move in the environment to reach

a target and a stay on trg action to stay along a LOC target during the obser-

vation and get to its ending point. Devices need a monitor action which allows

them to observe a target.

5.2.1.1 Transfer action

1 ( : durative−action t r a n s f e r

2 : parameters (? r − Agent ? l s t a r t ? l end − Site2D ? t − Target )

3 : durat ion (= ? durat ion

4 (∗ ( Distance2D ? l s t a r t ? l end ) (Time−unit−d i s t anc e ? r ) ) )

5 : c ond i t i on (and

6 ( at s t a r t ( c u r r e n t s i t e ? r ? l s t a r t ) )

7 ( at s t a r t (>= ( Fuel−Level ? r )

8 (∗ ( Distance2D ? l s t a r t ? l end )

9 ( Rate−Consumption ? r ) ) ) )

10 ( at s t a r t (> ( Distance2D ? l s t a r t ? l end ) 0 ) )

11
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12 ( at s t a r t ( s i t e t a r g e t ? l end ? t ) )

13 )

14 : ef fect (and

15 ( at s t a r t (not ( c u r r e n t s i t e ? r ? l s t a r t ) ) )

16 ( at end ( c u r r e n t s i t e ? r ? l end ) )

17 ( at end ( dec r ea se ( Fuel−Level ? r )

18 (∗ ( Distance2D ? l s t a r t ? l end )

19 ( Rate−Consumption ? r ) ) ) )

20

21 ( at s t a r t ( c h o s e n s t a r t s i t e t a r g e t ? r ? l end ? t ) )

22 )

23 )

Listing 5.3: The definition of the PDDL durative action transfer for the

baseline class of problems.

Listing 5.3 reports the transfer durative action schema. The parameters of the

action schema (row 2) are the agent ?r that must execute the action, two locations

?l start and ?l end respectively representing the current location of the agent

and the final point after the transfer, and a target ?t. The duration of this kind

of action (see rows 3-4) is expressed as the time ?r needs to get in ?l end from

?l start. Notice that in order to speed up the planner execution by simplifying

its operations it is possible to replace the numerical expression of the duration of

the action with a pre-calculated numerical fluent

(= ( t ime r equ i r ed ?a ?b ? r ) ?n)

where ?a and ?b are two Site2D, ?r is the Agent and ?n ∈ R+ is the time required

by ?r to go from ?a to ?b and it can be calculated as dist(a,b)
cruise speed(r)

. In the following

we will use this numeric fluent instead of the numerical expression. We will also

take advantage of other pre-calculated numerical fluents such as

(= ( f u e l r e q u i r e d t ?a ?b ? r ) ? f t )

(= ( f u e l r e q u i r e d m ? t ? r ) ?fm)

where ?a, ?b and ?r are defined as above, ?t is a Target, ?ft is the quantity

of fuel required by the agent ?r to go from ?a to ?b (calculated as dist(a, b) ∗
rate consumption(r)) and ?fm is the quantity of fuel required by the agent ?r

to stay on a target for the time required by the observation request. As well as

a speed up of the planning, the usage of these numerical fluents instead of the
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numerical expressions implies also a longer (but not significantly) pre-processing

phase.

Rows 6-12 report the preconditions of the transfer action. They require that the

robotic agent is located at the beginning of the action in ?l start and that the

agent has enough fuel to go from ?l start to ?l end (notice that this numerical

expression can be replaced by the pre-calculated numerical fluent fuel required t

as reported above). Precondition at row 10 requires that the distance between the

two points is greater than zero, otherwise it is not necessary a transfer action (the

agent is already in the desired position). Finally the last precondition requires

that in the final point ?l end is a target location. This precondition is consistent

because of the assumptions we have done on spatial modeling. In fact because we

don’t model all the points in space but only the significant ones (and in particular

only points characterizing targets or the initial location of the agents) and be-

cause we assume that agents only move following straight paths, the shortest path

between two different points cannot involve other locations but the two points.

Therefore there is no need in the baseline class of problem that a robotic agent

moves from a point to another that is not a target location. This precondition

has no impact on action consistency but it facilities the planning by reducing the

number of applicable actions.

Rows 15-21 report the effects of the action. They negate at the beginning the

current location of the agent and states at the end of the action the new position.

They also decrease the level of fuel of the agent. The last effect concerns the

choice of the starting point for the observation of a target for a specific observa-

tion request. It exploit a propositional fluent chosen start site target which

asserts that for ?t has been chosen the location ?l start as starting point for

the observation. If the related target is a point target the location is the unique

position where it is located and the information is not particularly useful, but if it

is a LOC target then the predicate allows to correctly update the position of ?r

and to decide at what end to start the observation of the target (this may have a

significant impact of the quality of the resulting plan).

Robotic agents also require a stay on target action which allows them to stay

on (or near) a target enough to perform an observation task. The action schema

is similar to the transfer action (we omit the implementation details to avoid

verbosity). The duration of this action must be greater than the minimum time
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of observation required by the related ObsReq. In case of LOC target the action

updates the current position of the agent at the end of the execution exploiting the

chosen start site target fluent. It also asserts at the beginning of its execution

a propositional fluent (on trg ?r ?t) (with ?r the Agent and ?t the Target)

and denies it at the end. This fluent is required as precondition by the monitoring

action and expresses the fact that the robotic agent is located in a position from

which the target is observable.

5.2.1.2 monitor action

1 ( : durative−action monitor

2 : parameters (?d − Device ? r − Agent ? t − Target )

3 : durat ion (>= ? durat ion (Time−min−obs ? t ) )

4 : c ond i t i on (and

5 ( at s t a r t ( t o obs e rve ? t ?d ) )

6 ( at s t a r t ( loaded on board ? r ?d ) )

7 ( at s t a r t (not ( covered ? t ) ) )

8

9 ( at s t a r t ( on t rg ? r ? t ) )

10 ( over a l l ( on t rg ? r ? t ) )

11 ( at end ( on t rg ? r ? t ) )

12 )

13 : ef fect (and

14 ( at s t a r t ( covered ? t ) )

15 )

16 )

Listing 5.4: The definition of the PDDL durative action monitor for the

baseline class of problems.

Listing 5.4 reports the monitor durative action schema. The parameters of the

action schema (row 2) are the device ?d that must execute the action, the robotic

agent ?r on which must be loaded ?d and a target ?t. The duration of this action

(row 3) must be greater or equal to the minimum duration of observation required

by ?t (specified by the numerical fluent Time-min-obs).

Rows 4-16 report the preconditions of the action. They require that the target

related to ?t must be observed with the device ?d which must be loaded on

board the robotic agent ?r. They also require that the predicate (on trg ?r ?t)

(which, as reported above, is stated at the beginning of the stay on trg action

and denied at the end) holds for the entire duration of the observation (see rows

9-11). These conditions guarantee the correct concurrency and synchronization

between the robotic agent and the device during the observation task.
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Precondition at row 7 requires that the observation request ?t has not been al-

ready covered at the beginning of the action scheduling. On one hand it prevents

that the same observation task is performed more than once, and on the other

hand it prevents that many devices start performing the same observation task

concurrently.

For simplicity we don’t model numerical resource consumption in the monitor

action performed by the device. However their modeling would be equivalent to

the reported modeling of fuel level consumption in transfer action.

The effects (rows 13-15) mainly concern the completion of the observation task. At

the beginning of the action is asserted a propositional fluent (covered ?t) which is

one of the predicates that must hold in the goal state. As above reported, asserting

this predicate at the beginning of the action, together with the precondition at row

7, allows to avoid that many agents concurrently perform the same observation

task.

5.2.2 Encoding the goal state

As the previous sections demonstrate, the majority of the reasoning over the con-

straints and requirements of the problems is performed by declaring a series of

predicates and functions while checking their consistency through the precondi-

tions of the actions.

Given these premises, the goal state can concern just the satisfaction of a covered

predicates, one for every ObsReq in problem (see Listing 5.5 for the goal definition

for the running example).

1 ( : goal

2 (and

3 ( covered T 1 1 )

4 ( covered T 2 2 )

5 ( covered T 3 1 )

6 ( covered T 4 3 )

7 )

8 )

Listing 5.5: The definition of PDDL goals for the instance of problem de-

scribed in section 5.1.
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5.3 An example of encoding in UAV domain

In the previous section we saw how to encode the main features of the baseline

class of problems. In the following of this chapter we describe how to adapt and

extend the encoding to introduce the extensions of the class of problems. In order

to avoid boring the reader but still give her a clear idea of what must be done

we describe the main elements of the two PDDL files (problem and domain files)

generated by the encoding for the running example and we comment them.

Listing 5.6 reports the definition of the main elements of the PDDL problem file

for the running example.

1 (define (problem Problem 2airp 2uav 4trgob 1mobs )

2 ( :domain SmatF2)

3 ( : objects

4 UAV 0 UAV 1 − Uav

5 S 0 S 1 − Sensor

6 AIRPORT 0 AIRPORT 1 − Airport

7 T 1 1 T 2 2 T 3 1 T 4 3 − Point

8 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 − Site2D )

9

10 ; ; i n i t i a l s t a t e d e f i n i t i o n

11 ( : in i t

12 ; ; A i rpor t s in format ion

13 ( s i t e f o r b e g i n t a k e O f f AIRPORT 0 L0)

14 ( s i t e f o r e n d t a k e O f f AIRPORT 0 L1)

15 ( s i t e f o r l a n d i n g AIRPORT 0 L2)

16 ( s i t e a f t e r l a n d i n g AIRPORT 0 L3)

17

18 ( s i t e f o r b e g i n t a k e O f f AIRPORT 1 L4)

19 ( s i t e f o r e n d t a k e O f f AIRPORT 1 L5)

20 ( s i t e f o r l a n d i n g AIRPORT 1 L6)

21 ( s i t e a f t e r l a n d i n g AIRPORT 1 L7)

22 ; ;UAVs in format ion

23 ( c u r r e n t s i t e UAV 0 L0)

24 (= (Time−take−o f f UAV 0 AIRPORT 0) 180)

25 (= (Time−l and ing UAV 0 AIRPORT 0) 360)

26 ( loaded on board UAV 0 S 0 )

27

28 ( c u r r e n t s i t e UAV 1 L4)

29 (= (Time−take−o f f UAV 1 AIRPORT 1) 120)

30 (= (Time−l and ing UAV 1 AIRPORT 1) 240)

31 ( loaded on board UAV 1 S 1 )

32

33 ; ; t a r g e t s and ob s e r va t i on r e qu e s t s in format ion

34 (= (Time−min−obs T 1 1 ) 30)

60



CHAPTER 5. TEMPORAL PLANNING 61

35 ( s i t e t a r g e t L8 T 1 1 )

36 ( t o obs e rve T 1 1 S 0 )

37 ( at 0 ( obse rvab l e T 1 1 ) )

38 ( at 3000 (not ( obse rvab l e T 1 1 ) ) )

39 ( be f o r e T 1 1 T 3 1 )

40 ( obse rvab l e p T 1 1 )

41

42 (= (Time−min−obs T 2 2 ) 60)

43 ( s i t e t a r g e t L9 T 2 2 )

44 ( t o obs e rve T 2 2 S 0 )

45 ( at 0 ( obse rvab l e T 2 2 ) )

46 ( obse rvab l e p T 2 2 )

47

48 (= (Time−min−obs T 3 1 ) 15)

49 ( s i t e t a r g e t L10 T 3 1 )

50 ( t o obs e rve T 3 1 S 1 )

51 ( at 0 ( obse rvab l e T 3 1 ) )

52 ( at 3000 (not ( obse rvab l e T 3 1 ) ) )

53

54 (= (Time−min−obs T 4 3 ) 180)

55 ( s i t e t a r g e t L11 T 4 3 )

56 ( t o obs e rve T 4 3 S 1 )

57 ( at 0 ( obse rvab l e T 4 3 ) )

58 ( at 1500 (not ( obse rvab l e T 4 3 ) ) )

59 ( at 4500 ( obse rvab l e T 4 3 ) )

60 ( at 8000 (not ( obse rvab l e T 4 3 ) ) )

61 ( obse rvab l e p T 4 3 )

62

63 ; ; temporal and s p a t i a l in format ion

64 (= ( t ime r equ i r ed L0 L0 UAV 0) 0)

65 (= ( t ime r equ i r ed L0 L0 UAV 1) 0)

66 (= ( t ime r equ i r ed L0 L1 UAV 0) 281 .8 )

67 (= ( t ime r equ i r ed L0 L1 UAV 1) 281 .8 )

68 . . .

69 (= ( t ime r equ i r ed L11 L11 UAV 0) 0)

70 (= ( t ime r equ i r ed L11 L11 UAV 1) 0)

71 . . .

72

73 ; ; a c t i on c on t i g u i t y

74 ( at 0 (= ( s t a r t n e x t UAV 0) 0 . 0 1 ) )

75 ( at 0 (= ( s t a r t n e x t UAV 1) 0 . 0 1 ) )

76

77 )

78 ; ; goa l and metr ic d e f i n i t i o n

79 ( : goal

80 (and

81 ( covered T 1 1 )

82 ( covered T 2 2 )

83 ( covered T 3 1 )

84 ( covered T 4 3 )
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85 ( landed UAV 0 AIRPORT 0)

86 ( landed UAV 1 AIRPORT 1)

87 )

88 )

89 ( : metr ic minimize ( to ta l−time ) )

90 )

Listing 5.6: The definition of the main elements of the PDDL problem for the

instance of problem described in section 5.1.

Rows 3-8 defines the objects involved in the problem. Notice that we replaced the

types Agent and Device respectively with the (equivalent) types Uav and Sensor.

It is a simple renaming to be more coherent to the domain but the new types

have the same features of the previous ones. Notice also that we introduced a

new type of objects Airport which represents the airports where the UAVs are

initially located and where they have to land.

Rows 10-77 contain the definition of the initial state of the problem. The first

information we need concern the airports. Rows 13-21 report, for each airport,

information on start and end positions of take off and landing. For simplicity

we assumed that all airports have only one runway dedicated to UAVs and that

all aircrafts respect the defined locations during their operation. In the running

example there are two UAVs (UAV 0 and UAV 1) initially located respectively in

AIRPORT 0 and AIRPORT 1. Rows 23-31 report these information as well as infor-

mation on the sensors loaded on board the UAVs (loaded on board fluents) and

information on time required by the UAVs to take-off (Time-take-off fluents)

and land (Time-landing fluents).

The information above reported are required by the take off and landing dura-

tive actions expressed in the domain file. Their schema is similar to the transfer

action schema (see Listing 5.3). The take off action has the additional task to

assert a propositional fluent (in flight ?u) (with ?u a Uav) which is a precondi-

tion of all the UAVs operation in flight. This precondition constraints the planner

to schedule a take off action before all the others. The landing action instead,

has the additional task to assert one of the predicates that are required to hold

in the goal state (see rows 85-86). In particular at the end of its execution is

asserted a predicate (landed ?u ?a) (with ?a the Airport at which the UAV ?u

landed).
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Rows 33-61 report information on targets and observation requests. They ex-

press the minimum duration required by the observations (via the numerical flu-

ent Time-min-obs, e.g. rows 34 and 42), the points where the targets are located

(predicate site target, e.g. rows 35 and 43) and the sensors that must be used

to satisfy the observation requests (predicate to observe, e.g. rows 36 and 44).

These information are used by the monitor and transfer actions as described in

the previous section. Rows 33-61 also report the encoding, for the running ex-

ample, of the features which characterize the extensions of the class of problems:

temporal constraints between targets observation and time windows on targets

observation. See the following 5.3.1 and 5.3.2 sections for a detailed description of

their encoding.

Rows 64-71 report temporal and spatial information. In particular for each pair of

location involved in the problem it is reported the time required by the UAVs to get

from one location to the other. For simplicity Listing 5.6 reports the initialization

of only few of the time required numerical fluents. Similarly it is necessary to

define, as already mentioned, all the numerical fluents expressing information on

the fuel quantity required by each UAV to get from one location to the other.

The fluents that provide temporal information are then used in actions schema to

define the durations of the actions. Fluents that provide information on fuel level

(or on any other agents resource) are used in actions preconditions and effects.

It is worth noting that despite the running example is very simple and involves only

two UAVs and four target observations, it is necessary to define in the initial state

2881 numerical fluents only for the time required functions. Therefore increasing

the number of targets (that implies increasing the number of locations) as well as

the number of UAVs leads to a significant increase in problem complexity.

Another important aspect to encode in a PDDL problem in UAV domain in tem-

poral planning concerns the contiguity of the actions. In a generic robotic agents

domain the contiguity of actions is not a critical aspect. Let us suppose robotic

agents that move on ground: it can be a good (or at least acceptable) approxi-

mation to assume that the internal status of the agents only change as effect of

the execution of an action. Therefore holes between actions in a plan in a generic

robotic agents domain can be considered acceptable. Conversely in UAV domain

1For each type of temporal and spatial information of such type it is necessary to initialize a
numerical fluent for each pair of locations and for each UAV involved in the problem (12 ∗ 12 ∗ 2
fluents in the running example involving twelve locations)
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they are not. As already explained, in every time instant UAVs have to perform

a flight action which implies both effects in terms of aircraft position up in the air

and numerical effects due to resources consumption. Therefore it is not a reason-

able choice to ignore holes between actions. PDDL 2.1 and 2.2 extensions don’t

provide any internal features to express this kind of constraint. However with

the help of the planners in terms of supporting continuous effects it is possible

to encode a set of preconditions and effects which allow the actions to be almost

contiguous.

For each UAV it is necessary to initialize a numerical fluent start next to 0.01

(e.g. see rows 74-75). Furthermore for each action that can be performed by a

UAV agent it is necessary to introduce a new set of preconditions

( at s t a r t (> ( s t a r t n e x t ?uav ) 0 ) )

( at s t a r t (< ( s t a r t n e x t ?uav ) 0 . 1 ) )

and a new set of effects

( at s t a r t ( a s s i g n ( s t a r t n e x t ?uav ) <ac t i on dura t i on >))

( dec r ea se ( s t a r t n e x t ?uav ) #t )

where ?uav is the Uav that has to perform the action, <action duration> is the

duration of the action which varies according to the action, and #t is the PDDL

keyword that represents a local clock of the action and refers to the continuous

changing time from the start of the action itself.

These elements allows to implement a mechanism in which at the beginning of

the actions the numerical fluent start next is initialized to the duration of the

action and for the entire duration of the action the value of the fluent is constantly

decreased until it reaches the 0 value. All the actions can only be scheduled by

the planner when the value of start next is between 0 and 0.1, that is when the

previous scheduled action is terminating.

In other words we force all actions to overlap for a defined small time interval

which we consider negligible at our level of abstraction and we obtain for each

UAV a sequence of almost contiguous actions, solving the problem of contiguity.

It is worth noting that this mechanism has a significant impact on definition of

actions schema. In fact because of the small overlap between actions it is necessary
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to revise time events at which some preconditions must be satisfied and some effects

must be applied. For instance it is necessary to anticipate at the beginning of the

actions the effects (before applied at the end of the action) that are preconditions

for the following actions. With the introduction of these elements, in fact, actions

have to start before the actual ending of the previous ones.

5.3.1 Temporal constraints between targets observation

In the running example (see 5.1) there is only one temporal constraint between

the targets observation: the problem requires that the ObsReq3 is satisfied at least

1 second after the end of the monitor action which satisfies the ObsReq1. This

constraint is encoded in the PDDL problem file via a propositional fluent (before

T 1 1 T 3 1) and with the introduction of a propositional fluent (observable p

?t) (with ?t a Target) for each Target which is observable from the beginning

of the mission (see rows 40, 46 and 61).

The introduction of such type of constraints also requires a series of changes in

actions schema definition in the domain. It requires the introduction of a new

action monitor before with an action schema similar to the monitor schema

defined in Listing 5.4. It takes two Target parameters ?t1 and ?t2 and it is only

applicable if exist a predicate (before ?t1 ?t2) and a predicate (observable p

?t1) holds. If applied, this action asserts at the end of its execution a predicate

(observable p ?t2) which enables the observation of ?t2. It is also necessary

to add as a precondition of the original monitor action the constraint that the

predicate (observable p ?t) (with ?t the Target object taken as parameter)

holds at the beginning of the action.

It is worth noting that in order to encode the temporal gap between the constrained

observations it is necessary to introduce a set of numerical fluents which keep track

of the passage of time during the planning (as well as we have to do in numerical

planning, see chapter 6). Exploiting such type of variables it is possible to define

new temporal preconditions on monitoring actions and encode the temporal gap

between constrained monitoring actions.

The running example requires only one Before constraint. The encoding of the

other types of constraints is analogous.
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5.3.2 Time windows on targets observation

The time windows within which the targets are observable in the running example

are modeled in PDDL problem using timed initial literals formalism (e.g. see rows

57-60). Notice that because in problem description target T2 is defined as always

observable during the mission temporal window and because there are no further

temporal constraints on the observation ObsReq2 it is sufficient to specify in the

PDDL problem that T 2 2 is observable from the beginning of the mission (time

0) without constraints on latest time of observation (see row 45 in Listing 5.6).

It is also necessary to introduce a new set of preconditions (reported below) in

monitoring actions which require that the target is observable for the entire dura-

tion of the action.

( at s t a r t ( obse rvab l e ? t ) )

( over a l l ( obse rvab l e ? t ) )

( at end ( obse rvab l e ? t ) )

?t is the Target object taken as parameter by the monitoring action.

5.3.3 Target observations assignment

Listing 5.4 reports in the goal definition the four predicates covered which require

that in the goal state the Target T 1 1, T 2 2, T 3 1, T 4 3 have been covered.

This representation implies that there is no assignment of the target observations

to the UAVs and the planner has to automatically choice which UAV to use to

satisfy an observation request.

In order to specify the assignments of the observation requests to the UAVs it is

sufficient to add a parameter to the covered propositional fluent, specifying the

UAV ?uav that must satisfy the request: (covered ?t ?uav).

Notice that in case the problem specifies the assignments it is also possible to

modify some of the actions and define a set of new fluents in order to both help

the planner by reducing the set of actions applicable in each state and allowing

it to find better solutions. For instance Listing 5.7 reports the action schema of

a new type of transfer action transfer to trg which allows a Uav to transfer

to a location at which is located a target only if the UAV must observe it. This
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action require a new propositional fluent as precondition: (to cover ?t ?uav)

where ?t is a Target and ?uav is the Uav that must perform the action (see row

13).

1 ( : durative−action t r a n s f e r t o t r g

2 : parameters (? r − Agent ? l s t a r t ? l end − Site2D ? t − Target )

3 : durat ion (= ? durat ion

4 (∗ ( Distance2D ? l s t a r t ? l end ) (Time−unit−d i s t anc e ? r ) ) )

5 : c ond i t i on (and

6 ( at s t a r t ( c u r r e n t s i t e ? r ? l s t a r t ) )

7 ( at s t a r t (>= ( Fuel−Level ? r )

8 (∗ ( Distance2D ? l s t a r t ? l end )

9 ( Rate−Consumption ? r ) ) ) )

10 ( at s t a r t (> ( Distance2D ? l s t a r t ? l end ) 0 ) )

11

12 ( at s t a r t ( s i t e t a r g e t ? l end ? t ) )

13 (at start ( to cover ?t ?uav))

14 )

15 : ef fect (and

16 ( at s t a r t (not ( c u r r e n t s i t e ? r ? l s t a r t ) ) )

17 ( at end ( c u r r e n t s i t e ? r ? l end ) )

18 ( at end ( dec r ea se ( Fuel−Level ? r )

19 (∗ ( Distance2D ? l s t a r t ? l end )

20 ( Rate−Consumption ? r ) ) ) )

21

22 ( at s t a r t ( c h o s e n s t a r t s i t e t a r g e t ? r ? l end ? t ) )

23 )

24 )

Listing 5.7: The definition of the PDDL durative action transfer to trg for

the baseline class of problems.

It is also possible to define a transfer to land action which allows the Uav to

perform a transfer to the site for landing only if it has covered all its target

observations. In order to define this type of action it is necessary to initialize for

each Uav two new numerical fluents in the initial state

(= ( NumberTrgCovered ?uav ) 0)

(= ( NumberTrgAssigned ?uav ) ?n)

where ?uav is a Uav and ?n is the number of target observations assigned to ?uav.

It is also necessary to increase the value of the NumberTrgCovered after every

monitor action.
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5.4 Solution decoding

Listing 5.8 reports a valid plan2 solving the problem modeled in section 5.3.

1 0 . 0 0 1 : ( t a k e o f f uav 1 l 4 l 5 a i r p o r t 1 ) [ 1 2 0 . 0 0 0 ]

2 0 . 0 0 2 : ( t a k e o f f uav 0 l 0 l 1 a i r p o r t 0 ) [ 1 8 0 . 0 0 0 ]

3 11 9 . 90 1 : ( t r a n s f e r t o t r g uav 1 l 4 l 11 t 4 3 ) [ 4 3 5 . 2 0 0 ]

4 17 9 . 90 2 : ( t r a n s f e r t o t r g uav 0 l 0 l 8 t 1 1 ) [ 1 4 5 6 . 0 0 0 ]

5 55 4 . 90 1 : ( s t a y o n t r g uav 1 l11 t 4 3 ) [ 1 9 0 . 0 0 0 ]

6 56 4 . 60 3 : ( monitor s 1 uav 1 t 4 3 ) [ 1 8 0 . 0 0 0 ]

7 74 4 . 60 2 : ( t r a n s f e r t o t r g uav 1 l11 l10 t 3 1 ) [ 1 6 0 9 . 1 0 0 ]

8 1635 . 702 : ( s t a y o n t r g uav 0 l 8 t 1 1 ) [ 4 0 . 0 0 0 ]

9 1635 . 903 : ( mon i to r be fo r e s 0 uav 0 uav 1 t 1 1 t 3 1 ) [ 3 0 . 0 0 0 ]

10 1675 . 403 : ( t r a n s f e r t o t r g uav 0 l 8 l 9 t 2 2 ) [ 1 1 8 1 . 1 0 0 ]

11 2353 . 302 : ( s t a y o n t r g uav 1 l10 t 3 1 ) [ 2 5 . 0 0 0 ]

12 2353 . 703 : ( monitor s 1 uav 1 t 3 1 ) [ 1 5 . 0 0 0 ]

13 2377 . 802 : ( t r a n s f e r t o l a n d uav 1 l10 l 6 a i r p o r t 1 ) [ 1 8 9 9 . 4 0 0 ]

14 2856 . 103 : ( s t a y o n t r g uav 0 l 9 t 2 2 ) [ 7 0 . 0 0 0 ]

15 2856 . 504 : ( monitor s 0 uav 0 t 2 2 ) [ 6 0 . 0 0 0 ]

16 2925 . 604 : ( t r a n s f e r t o l a n d uav 0 l 9 l 2 a i r p o r t 0 ) [ 4 9 8 . 3 0 0 ]

17 3423 . 304 : ( land ing uav 0 l 2 l 3 a i r p o r t 0 ) [ 3 6 0 . 0 0 0 ]

18 4276 . 603 : ( land ing uav 1 l 6 l 7 a i r p o r t 1 ) [ 2 4 0 . 0 0 0 ]

Listing 5.8: A valid temporal plan solving the problem described in section

5.1.

The plan contains 18 actions: 14 concerns the UAVs and are equally divided

between UAV 0 and UAV 1, the remaining 4 are the monitoring actions (see rows

6, 9, 12 and 15) scheduled for the devices mounted on board the UAVs.

The first aspect it is worth noting is that the actions of every UAV are nearly con-

tiguous. For instance the take off of UAV 1 (see row 1) is scheduled at time point

0 (we are ignoring the last significant decimal digit of the starting time of the ac-

tions) and it lasts 120 seconds. The following action of UAV 1 is a transfer to trg

(see row 3) and it is scheduled at 119.9, that is 0.1 seconds before the ending of

the previous action. By considering not significant this small time interval3 we

obtain a sequential plan for each UAV without temporal holes between actions.

Another important aspect to notice concerns concurrency between UAVs and de-

vices. Every time a device has to perform a monitoring action it is required that

the UAVs on which it is loaded is near enough to the target to observe. In order

to obtain it the planner always schedules a device’s monitoring action together

2The plan was obtained by running the planner COLIN.
3Notice that if 0.1 seconds are significant in a certain domain, it is sufficient to initialize the

duration of the actions to a value which takes into account of this time interval.
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with a UAV’s stay on trg action. An observation task is therefore always repre-

sented by two concurrent actions stay on trg and monitor (or monitor before)

respectively performed by a UAV and a device (see for instance rows 5 and 6:

the monitoring action is scheduled 10 seconds after the start of the execution of a

stay on trg action by the UAV and they end together).

In order to decode and to make easier to read the solution returned by the planner

it is necessary to perform a series of tasks. First of all actions must be divided

according to the UAV or the device that must execute them.

Two different kinds of plan representations may be submitted to an end user. A

temporal representation can be obtained by a translation of the plan into Gantt di-

agrams which allow the end user to easily understand where actions are temporally

located and to verify if the plan is satisfying in terms of temporal displacement

of the observation tasks. A spatial representation instead can be obtained by a

translation of the plan into a set of sequences (one for each UAV involved in the

problem) of waypoints in space reported on a map. Notice that while the tem-

poral translation can be directly done with pieces of information included in the

plan, the spatial translation requires instead a set of information that have to be

stored in an internal database during the encoding phase. In particular the loca-

tions submitted to the planner (and then reported in the final plan, e.g. l4 or

l5 at row 1) are only symbolic representations of the actual geographical points.

Therefore it is necessary to retrieve the actual spatial information from the in-

ternal database by matching them with the symbolic locations in the plan. The

translation into waypoints takes into account of the type of action. If the action

is a point monitoring action, it involves only one location that is translated into a

unique waypoint. Otherwise if the action is a LOC monitoring action, it involves

two locations in PDDL problem and it is translated into a sequence of two or more

waypoints according to the description of the related target. Therefore, at the end

of the translation, all the waypoints entirely describe the route of the UAV.

Both temporal and spatial translations require also to report the names of actions

and entities involved in the problem in a format easy to read by the end user (e.g.

“Transfer to target” instead of transfer to trg, “Radar Sensor” instead of S 0,

but more complex translations are also required). This can be done by storing, at

the same way of the locations, the matching between objects and symbols used by

the planner.
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Chapter 6

Numerical planning

In this chapter we present how to encode the class of problems (and its extensions)

described in chapter 3 using a numerical planning model. This type of modeling

doesn’t use neither durative actions or timed initial literals. However in order to

exploit numerical expressions it is necessary to adopt the PDDL 2.1 formalism.

The main difference with the temporal model concerns, as already mentioned, the

time representation. Numerical planners doesn’t provide any internal mechanism

which explicitly (in a way visible by a user) represents the time passage, the

actions’ duration or their temporal location. The numerical model requires to

explicitly manually model the time passage by using PDDL objects. For this

reason it is necessary to define some functions (see section 6.1) to represent the

current time of each agents after every action. It is also necessary to keep track, in

order to satisfy the temporal constraints of the problems, of the significant events

of the scheduled actions (e.g. the time point at which a UAV performs a take off,

the starting time of monitoring a target, etc.) by using numerical fluents that are

updated by the effects of the actions and represent the delta from an origin (set

to 0) that corresponds to the earliest time of the mission.

The use of non-durative actions also requires to find mechanisms to be able to

obtain enough information from the planner solution, that, in this type of mod-

eling, doesn’t contain temporal information on the actions scheduling. In fact a

numerical plan only shows the sequence of actions with the related parameters.

While in case of single robotic agent mission this is quite enough to easily decode

the solution (despite the concurrency between robotic agents and devices that, as

we’ll see in 6.1.2, can be simplified through the introduction of joint actions), the
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lack of information in planner’s solution is a particularly relevant problem instead

when the problems involve multiple robotic agents. The planner builds in fact

a total-ordered-plan, treating actions as all sequential, while we desire a set of

concurrent total ordered plans. As we’ll see in 6.3 this problem can be faced by a

complex mechanism of decoding which retrieves all the required information from

an internal database in which they are stored.

It is worth noting that a numerical approach, despite a less clear modeling, also

has some advantages. For instance the problem of contiguity between actions is

implicitly solved by the planner, which builds sequential plans. Therefore it is not

necessary the mechanism described at the end of 5.3 to force actions’ contiguity.

Numerical planning is also a less recent and more in depth studied approach in

automated planning, therefore planners are typically more efficient in solving such

type of problems.

6.1 Encoding the action model

In order to make the description of the actions schema lighter we briefly describe

the two most significant types of actions of a numerical model. The rest of them

is in fact quite similar.

6.1.1 Initial waiting action

Because of the lack of an explicit representation of time the first action we need

to model concerns the passage of time. As mentioned, numerical planners build

sequential plans without temporally locate the actions. This implies that in order

to obtain plans which satisfy temporal constraints on target observations it is

necessary to introduce actions that simulate the passage of time.

Listing 6.1 reports the action schema of a initial waiting action for a generic

robotic agents domain in numerical planning. This action is applicable only when

the robotic agent ?r (taken as parameter) has not started yet its mission (see the

precondition at row 3). The effects of the actions impact on two different nu-

merical fluents which have to be introduced in a numerical model. (Delta-Time

?r) (where ?r denotes an Agent) is a function initialized in initial state to a
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value (typically 01) that represents the first useful moment (referring to the ear-

liest time of the global mission) when ?r starts its actions. (Time-mission ?r)

(with ?r an Agent) is a function initialized in initial state to the same value of

(Delta-Time ?r) and represents the time clock of ?r during the mission. The

initial-waiting action affects these fluents by increasing their values of a value

waiting-time defined in the initial state of the problem. The use of a fixed value

such as waiting-time is required by the lack of the possibility to specify a dura-

tion of the actions.

1 ( : action i n i t i a l −wait ing

2 : parameters (? r − Agent )

3 : precondition (and ( r eady to go ? r ) )

4 : ef fect (and ( i n c r e a s e ( Delta−Time ? r ) ( wait ing−time ) )

5 ( i n c r e a s e (Time−miss ion ? r ) ( wait ing−time ) )

6 )

7 )

Listing 6.1: The definition of the PDDL action initial waiting for a generic

robotic agents domain in numerical planning.

The initial-waiting action, therefore, represents the time passing at the begin-

ning of the mission of ?r. It doesn’t impact any agent’s resource or environment

variable. It is a type of action which only allows to model the time passage which

is instead explicit in temporal planning.

Notice that in case of baseline class of problems we don’t impose any constraint

on contiguity of actions. Since numerical planners build sequential plans, if it can

be useful in a specific domain to model time passing between subsequent actions

of the same robotic agent, it is necessary to model a further waiting action. The

waiting action only increases the (Time-mission ?r) fluent and can be scheduled

by the planner after all other actions, except for the initial-waiting one. The

action has no effects on fluent (Delta-Time ?r) (unlike the initial-waiting

action) because it describes the time point at which the robotic agent ?r start its

mission. In UAV class of problems, because of the need to have contiguous actions

it is sufficient to represent the time passing before the UAV takes off, therefore it

is sufficient the initial-waiting action.

1The initial value of Delta-Time can be also initialized to a value greater than 0 and calculated
by using some heuristics.
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6.1.2 Monitor action

The second main type of action concerns monitoring actions. Because of the

difficulty of modeling temporal aspects and the concurrency between actions, it is

possible to simplify the modeling of monitoring tasks.

While in temporal planning it is possible to easily model concurrency between

a robotic agent and its devices (monitoring action are automatically scheduled

during the robotic agent’s stay on trg action, see 5.2.1.2), in numerical planning

it is more complex because of the need to simulate the time passing. In order to

obtain concurrency between stay on trg actions and monitor actions the planner

should schedule, for each device that must perform an observation, a set of waiting

actions which move the monitoring actions at the right time (at the time point

when the agent on which the device is loaded is performing the related stay on trg

action). This would imply plans with many waiting actions for each device (as we

mentioned in 6.1.1, duration of the actions is fixed in numerical planning, therefore

it is not possible to schedule only one action of the required duration). It would

also imply an increase of the problem complexity because of the higher number of

actions.

A easier and cleaner solution consists in defining a joint action of monitoring

which includes the monitor and the stay on trg actions previously performed by

devices and robotic agents. It implies a simplification of the model by interpreting

devices only as parameters of actions performed by robotic agents and it also

allows to both reduce the problem complexity and to obtain more understandable

final plans.

Listing 6.2 reports the action schema of the joint action of monitoring a point

target for UAV class of problems with the extension of observability windows of

targets.

1 ( : action m o n i t o r p o i n t t a r g e t

2 : parameters (? uav − Uav ? l s t a r t − Site2D ? t − Point ? s − Sensor )

3 : precondition (and

4 ; agent p r e cond i t i on s

5 ( o n f l y ?uav )

6 ( c u r r e n t s i t e ?uav ? l s t a r t )

7 ( loaded on board ?uav ? s )

8 (>= ( Fuel−Level ?uav )

9 (∗ (∗ (Time−min−obs ? t ) ( Cruise−speed ?uav ) )
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10 ( Rate−Consumption ?uav ) ) )

11

12 ; t a r g e t p r e cond i t i on s

13 ( t o obs e rve ? t ? s )

14 (not ( covered ? t ) ) )

15

16 ; temporal p r e cond i t i on s

17 (>= (Time−miss ion ?uav ) ( E a r l i e s t−time−s t a r t−obs−t a r g e t ? t ) )

18 (<= (+ (Time−miss ion ?uav ) (Time−min−obs ? t ) )

19 ( Latest−time−end−obs−t a r g e t ? t ) )

20 )

21 : ef fect (and

22 ; t a r g e t e f f e c t s

23 ( covered ? t )

24

25 ; t ime e f f e c t s

26 ( a s s i g n (Time−miss ion−s t a r t−obs−t a r g e t ? t )

27 (Time−miss ion ?uav ) )

28 ( a s s i g n (Time−miss ion−end−obs−t a r g e t ? t )

29 (+ (Time−miss ion ?uav ) (Time−min−obs ? t ) ) )

30 ( i n c r e a s e (Time−miss ion ?uav ) (Time−min−obs ? t ) )

31 ( i n c r e a s e ( to ta l−f l y−time ) (Time−min−obs ? t ) )

32

33 ; agent e f f e c t s

34 ( i n c r e a s e ( NumberTrgCovered ?uav ) 1)

35 ( dec r ea se ( Fuel−Level ?uav )

36 (∗ (∗ (Time−min−obs ? t ) ( Cruise−speed ?uav ) )

37 ( Rate−Consumption ?uav ) ) )

38 ) )

Listing 6.2: The definition of the PDDL joint action monitor point target

for the UAV class of problems with observability windows extension in numerical

planning.

This type of action takes as parameters a Uav ?uav, a Point ?t, a Sensor ?s

and the initial location of the UAV ?l start.

The agent’s and target’s preconditions and effects are analogous to the ones de-

scribed in chapter 5 for the stay on trg and monitor actions.

The main difference of this type of action concerns the modeling of the time and

temporal windows on targets observation.

Temporal windows on targets observation are modeled by using two numerical flu-

ents (Earliest-time-start-obs-target ?t) and (Latest-time-end-obs-target

?t) which represent the extremes of the temporal window in which the target re-

lated to ?t is observable. Notice that this modeling is less flexible than timed
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initial literals (e.g. it is not possible to define more than one window of observ-

ability) but it doesn’t require durative actions. The two preconditions at rows

17-18 constraint the scheduling of the monitoring action within the related tem-

poral window. They check if the Time-mission of ?uav (which represents the time

point at which ?uav is situated when the action has to be performed) is greater

than the earliest time of observation of the target and if the time at which ?uav

would be situated at the end of the action’s execution ((+ (Time-mission ?uav)

(Time-min-obs ?t))) is less than the latest time of observation of the target.

Time is modeled via a series of numerical fluents. Time-mission, as we al-

ready mentioned, represents the current time clock of the UAV. As effect of

the monitoring action, this fluent is updated by increasing it with the dura-

tion of the action itself. The same effect is applied to total-fly-time fluent

which represents the total time the entire team of UAVs has been in flight dur-

ing the mission. Rows 26-29 furthermore assign a value to the numerical fluents

(Time-mission-start-obs-target ?t ?uav) and

(Time-mission-end-obs-target ?t ?uav)

which respectively represent the time point at which the observation of ?t started

and the time point at which it ended. These fluents are relevant in order to

model temporal constraints between targets observations because they maintain

the temporal information (otherwise lost during the planning) on previous moni-

toring actions that must be used for the following ones.

We reported the schema of the two actions which enclose the main characteristics

of a numerical model. The other actions are similarly defined. In the following

of this chapter we first briefly illustrates how to encode in numerical planning the

running example and then we analyze the difficulties of the decoding phase to be

faced when the numerical approach is chosen.

6.2 Encoding the running example in UAV do-

main

Listing 6.3 reports the definition of the main elements of the PDDL problem file

for the running example in numerical planning.
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1 (define (problem Problem 2airp 2uav 4trgob 1mobs )

2 ( :domain SmatF2)

3 ( : objects

4 UAV 0 UAV 1 − Uav

5 S 0 S 1 − Sensor

6 AIRPORT 0 AIRPORT 1 − Airport

7 T 1 1 T 2 2 T 3 1 T 4 3 − Point

8 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 − Site2D )

9

10 ; ; i n i t i a l s t a t e d e f i n i t i o n

11 ( : in i t

12 ; ; A i rpor t s in format ion

13 ( s i t e f o r b e g i n t a k e O f f AIRPORT 0 L0)

14 ( s i t e f o r e n d t a k e O f f AIRPORT 0 L1)

15 ( s i t e f o r l a n d i n g AIRPORT 0 L2)

16 ( s i t e a f t e r l a n d i n g AIRPORT 0 L3)

17

18 ( s i t e f o r b e g i n t a k e O f f AIRPORT 1 L4)

19 ( s i t e f o r e n d t a k e O f f AIRPORT 1 L5)

20 ( s i t e f o r l a n d i n g AIRPORT 1 L6)

21 ( s i t e a f t e r l a n d i n g AIRPORT 1 L7)

22 ; ;UAVs in format ion

23 ( c u r r e n t s i t e UAV 0 L0)

24 (= (Time−take−o f f UAV 0 AIRPORT 0) 180)

25 (= (Time−l and ing UAV 0 AIRPORT 0) 360)

26 ( loaded on board UAV 0 S 0 )

27 ( r e a d y t o t a k e o f f UAV 0 AIRPORT 0)

28 (= ( Delta−Time UAV 0) 0)

29 (= (Time−miss ion UAV 0) 0)

30

31 ( c u r r e n t s i t e UAV 1 L4)

32 (= (Time−take−o f f UAV 1 AIRPORT 1) 120)

33 (= (Time−l and ing UAV 1 AIRPORT 1) 240)

34 ( loaded on board UAV 1 S 1 )

35 ( r e a d y t o t a k e o f f UAV 1 AIRPORT 1)

36 (= ( Delta−Time UAV 1) 0)

37 (= (Time−miss ion UAV 1) 0)

38

39 ; ; t a r g e t s and ob s e r va t i on r e qu e s t s in format ion

40 (= (Time−min−obs T 1 1 ) 30)

41 ( s i t e t a r g e t L8 T 1 1 )

42 ( t o obs e rve T 1 1 S 0 )

43 (= ( E a r l i e s t−time−s ta r t−obs−t a r g e t T 1 1 ) 0)

44 (= ( Latest−time−end−obs−t a r g e t T 1 1 ) 3000)

45 ( be f o r e T 1 1 T 3 1 )

46 (= ( obse rvab l e T 1 1 ) 0)

47 ( obse rvab l e p T 1 1 )

48 (= (Time−miss ion−s t a r t−obs−t a r g e t T 1 1 ) 0)

49 (= (Time−miss ion−end−obs−t a r g e t T 1 1 ) 0)

50
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51 (= (Time−min−obs T 2 2 ) 60)

52 ( s i t e t a r g e t L9 T 2 2 )

53 ( t o obs e rve T 2 2 S 0 )

54 (= ( E a r l i e s t−time−s ta r t−obs−t a r g e t T 2 2 ) 0)

55 (= ( Latest−time−end−obs−t a r g e t T 2 2 ) 999999995904)

56 (= ( obse rvab l e T 2 2 ) 0)

57 ( obse rvab l e p T 2 2 )

58 (= (Time−miss ion−s t a r t−obs−t a r g e t T 2 2 ) 0)

59 (= (Time−miss ion−end−obs−t a r g e t T 2 2 ) 0)

60

61 (= (Time−min−obs T 3 1 ) 15)

62 ( s i t e t a r g e t L10 T 3 1 )

63 ( t o obs e rve T 3 1 S 1 )

64 (= ( E a r l i e s t−time−s ta r t−obs−t a r g e t T 3 1 ) 0)

65 (= ( Latest−time−end−obs−t a r g e t T 3 1 ) 3000)

66 (= ( obse rvab l e T 3 1 ) 999999995904)

67 (= (Time−miss ion−s t a r t−obs−t a r g e t T 3 1 ) 0)

68 (= (Time−miss ion−end−obs−t a r g e t T 3 1 ) 0)

69

70 (= (Time−min−obs T 4 3 ) 180)

71 ( s i t e t a r g e t L11 T 4 3 )

72 ( t o obs e rve T 4 3 S 1 )

73 (= ( E a r l i e s t−time−s ta r t−obs−t a r g e t T 4 3 ) 0)

74 (= ( Latest−time−end−obs−t a r g e t T 4 3 ) 1500)

75 (= ( obse rvab l e T 4 3 ) 0)

76 ( obse rvab l e p T 4 3 )

77 (= (Time−miss ion−s t a r t−obs−t a r g e t T 4 3 ) 0)

78 (= (Time−miss ion−end−obs−t a r g e t T 4 3 ) 0)

79

80 ; ; temporal and s p a t i a l in format ion

81 (= ( t ime r equ i r ed L0 L0 UAV 0) 0)

82 (= ( t ime r equ i r ed L0 L0 UAV 1) 0)

83 (= ( t ime r equ i r ed L0 L1 UAV 0) 281 .8 )

84 (= ( t ime r equ i r ed L0 L1 UAV 1) 281 .8 )

85 . . .

86 (= ( t ime r equ i r ed L11 L11 UAV 0) 0)

87 (= ( t ime r equ i r ed L11 L11 UAV 1) 0)

88 . . .

89

90 (= ( wait ing−time ) 100)

91 (= ( to ta l−f l y−time ) 0)

92 (= ( min de l ta t ime ) 999999995904)

93 (= ( max time miss ion ) 0)

94

95 )

96 ; ; goa l and metr ic d e f i n i t i o n

97 ( : goal

98 (and

99 ( covered T 1 1 )

100 ( covered T 2 2 )

78



CHAPTER 6. NUMERICAL PLANNING 79

101 ( covered T 3 1 )

102 ( covered T 4 3 )

103 ( landed UAV 0 AIRPORT 0)

104 ( landed UAV 1 AIRPORT 1)

105 (<= (− ( max time miss ion ) ( min de l ta t ime ) ) 10800)

106 )

107 )

108 ( : metr ic minimize ( to ta l−f l y−time ) )

109 )

Listing 6.3: The definition of the main elements of the PDDL problem in

numerical planning for the instance of problem described in section 5.1.

Most of the reported information are the same we have described in chapter 5.

Notice in the UAVs information (rows 22-37) the assertion, for each UAV in the

problem, of the propositional fluent ready to takeoff which is a precondition of

the action initial-waiting and it is then denied by the take off action. Also no-

tice the initialization to 0 of the numerical fluents Delta-Time and Time-mission

related to each UAV.

We already defined how to model temporal windows of targets observation, see

rows 43-44 or 54-55 for some example in the running example. In section 6.2.1

instead we describe how to model temporal constraints between targets observa-

tion.

Rows 92-93 reports two numerical fluent exploited by the planner to choose be-

tween some actions to apply. In particular (min delta time) represents the mo-

ment (delay from time 0) of the first take-off. It is initialized to an approximation

of an infinite value in the initial state and it is updated by the TakeOff actions. In

particular, every time the planner schedules a take-off which is temporally located

before another take-off previously scheduled, this fluent is updated to the earliest

time. Notice that in order to implement it you must define a further TakeOff

actions (e.g. called take off prev) which is applicable only in case it has to be

scheduled before the current min delta time. (max time mission) is a similar

fluent which represents the moment of latest landing. It is initialized to 0 in the

initial state and it is updated by the landing actions. Also this update requires

a further Landing action applicable only in case it has to be scheduled after the

current max time mission. The meaning of this additional fluents and actions is

related to the goal of the max duration of the mission that can be calculated as

reported in row 105 and that has not to consider the initial waiting actions.
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Finally notice that the numerical fluent (total-fly-time) described in the previ-

ous section, which represents the total time in which all UAVs have been in flight,

can be used as metric to minimize in problem evaluation and optimization (see

row 108).

6.2.1 Temporal constraints between targets observation

Fluents before, observable and observable p are used, as well as in temporal

planning, to model temporal constraints between targets observation. The predi-

cate before (as well as the other temporal predicates described in 3.3) is used to

specify the temporal constraint between targets observations. The numerical flu-

ent observable expresses the first time point at which a target’s observation can

be performed. If the target’s observation is not constrained by another one, this

fluent is initialized to the same value of the (Earliest-time-start-obs-target

?t - Target) fluent (e.g. see row 75). Otherwise if the target’s observation is

constrained by another one (e.g. in the running example T 3 1 can be observed

only after T 1 1) this fluent is initialized to a positive infinite value (or an approx-

imation, see row 66) and the related predicate observable p is not asserted in

the initial state (e.g. in the initial state reported in Listing 6.3 is not asserted the

predicate (observable p T 3 1)). These predicates are then used as precondi-

tions in monitoring action as follows:

( o s s e r v a b i l e ? t )

(<= ( obse rvab l e ? t ) (Time−miss ion ?uav ) )

with ?t the Target and ?uav the Uav that has to perform the monitoring action.

Therefore an observation ?t constrained by a before predicate can be performed

only after both the predicate (observable p ?t) has been asserted and the value

of the numerical fluent (observable ?t) has been updated by some other action

to a value that is less than the time at which the agent needs to perform the

action. It is worth noting that in order to express these constraints it is not

sufficient to use the propositional fluent observable p because, in case of multi-

agents problems, there are no guarantee that the planner applies the actions of

different agents in the right temporal order. Conversely it would be sufficient to

use only the numerical fluent(observable) to express the constraint, however we

noticed that using both of them helps the planner to find a solution faster.
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It is also worth noting that we are assuming that a target’s observation cannot

be constrained by more than one other observation. For example we allow sets of

constraints like

(Before(OR1, OR2, 1,+∞), Before(OR3, OR1, 1,+∞), Before(OR1, OR4, 1,+∞))

in which a specific target’s observation (e.g. OR1) may be involved as con-

straining other observations in many temporal relations but at most one time

as constrained observation. Conversely we don’t allow sets of constraints like

(Before(OR1, OR2, 1,+∞), Before(OR3, OR2, 1,+∞)) in which an observation

(e.g. OR2) is involved multiple times as constrained observation. This assumption

implies that a certain observation could enable more than one other observation.

Because the majority of planner doesn’t support universal quantification and con-

ditional effects, which would allow to enable, as effect of a monitoring action, all

the other observations constrained by the current one, it is necessary to introduce

a new type of action to do it.

1 ( : action e n a b l e t a r g e t b e f

2 : parameters (? t1 ? t2 − Target )

3 : precondition (and ( be f o r e ? t1 ? t2 ) ( covered ? t1 ) )

4 : ef fect (and

5 ( a s s i g n ( obse rvab l e ? t2 ) (Time−miss ion−end−obs−t a r g e t ? t1 ) )

6 ( obse rvab l e p ? t2 ) )

7 )

Listing 6.4: The definition of the PDDL action enable target bef in numer-

ical planning.

Listing 6.4 reports the action schema which enable targets observation in case of

Before constraint. In action’s effects the observable function is updated to the

value of the ending moment of observation of ?t1. This means in case of Before

constraint we permit the observation of ?t2 only after the observation of ?t1 is

ended.

Notice that an alternative modeling of this constraints, which is cleaner, requires

less fluents and no additional actions, consists in defining only the constraints as

problem goals, by exploiting the fluents Time-mission-start-obs-target and

Time-mission-end-obs-target. For instance it is possible to define for the run-

ning example the goal

(< (Time-mission-end-obs-target T 1 1) (Time-mission-start-obs-target

T 3 1)). However this approach has proven to be particularly inefficient and to

make unsolvable in reasonable time even very simple problems. Therefore we
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adopted the former approach described in this section, even if more tricky to

model.

6.3 Solution decoding

Plan UAV 0 UAV 1

0.000: (take_off uav_1 l4 l5 airport_1) [0.001]

0.001: (transfer_to_trg uav_1 l5 l11 t_4_3) [0.001]

0.002: (monitor_point_target uav_1 l11 t_4_3 s_1) [0.001]

0.003: (take_off uav_0 l0 l1 airport_0) [0.001]

0.004: (transfer_to_trg uav_0 l1 l8 t_1_1) [0.001]

0.005: (monitor_point_target uav_0 l8 t_1_1 s_0) [0.001]

0.006: (enable_target_bef t_1_1 t_3_1 uav_0 uav_1) [0.001]

0.007: (transfer_to_trg uav_0 l8 l9 t_2_2) [0.001]

0.008: (monitor_point_target uav_0 l9 t_2_2 s_0) [0.001]

0.009: (transfer_to_land uav_0 l9 l2 airport_0) [0.001]

0.010: (transfer_to_trg uav_1 l11 l10 t_3_1) [0.001]

0.011: (landing_succ uav_0 l2 l3 airport_0) [0.001]

0.012: (monitor_point_target uav_1 l10 t_3_1 s_1) [0.001]

0.013: (transfer_to_land uav_1 l10 l6 airport_1) [0.001]

0.014: (landing_succ uav_1 l6 l7 airport_1) [0.001]

Listing 6.5: A valid temporal plan solving the prob-

lem described in section 5.1 in numerical planning. The

actions in the plan have been manually annotated with

temporal information on their ending time (see the nu-

merical values reported after the squared brackets).

120

265

445

180

1054

1084

- -

2265

2325

2823

2054

3183

2069

3968

4208

Listing 6.6:

The ending

time of the

actions of

the plan in

Listing 6.5.

Listing 6.5 reports a valid plan solving the problem modeled in section 6.2. The

plan contains 15 actions: 14 concerns the UAVs and are equally divided be-

tween UAV 0 and UAV 1, the remaining one (action 0.006) is the support action

enable target bef which enables the target’s observation T 3 1.

Notice that the numerical values reported by the planner, which in temporal plan-

ning give information about the starting time and the duration of the actions,

here don’t provide any relevant temporal information. In fact the first numerical

value only gives an order between actions in the sequence and the value within

brackets is always 0.001 by default. In order to have a clearer view of the plan

we manually calculated the ending time of the actions of the plan (which is also

the starting time of the next action of the same UAV.) and we reported them
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in Listing 6.6. The manual operation we have done corresponds to part of the

automatic decoding process required in numerical planning.

The decoding phase is essential in numerical planning in order to provide exhaus-

tive and meaningful information to the user. The plan in fact cannot be directly

displayed to the user because it is not self-explanatory and it also could be mis-

leading. It is easy to see by looking at our manual temporal annotations that

actions in planner’s solution are only temporally ordered w.r.t. the same UAV but

they aren’t ordered among different UAVs. For instance actions 0.002 and 0.003,

which belong to different UAVs, are in a wrong temporal order (the monitoring

action performed by UAV 1 starts at time 265 and it is located in the plan before

the take off of UAV 0 which starts at time 0). Without temporal information this

can be obviously confusing.

In order to represent the plan in a consistent higher level format easily inter-

pretable by a human operator it is thus necessary a complex decoding procedure

in which starting from the solution provided by the planner you must perform a

kind of simulation of the execution in which each action is replaced by a temporally

annotated one according to its type. It is necessary a strict link between encoding

and decoding phase because they have to share a set of information which are used

both on initial state definition and in solution translation (e.g. the time a UAV

needs to land or the fixed duration of waiting actions necessary to simulate the

passage of time). Therefore it is necessary to store in an internal database during

the encoding phase all the used temporal information, such as the a priori defined

durations of the actions (e.g. the duration of the take off of a certain UAV from

a specific airport), as well as the time required to move between all couples of

targets and points in the environment in order to recalculate the duration of the

Transfer actions, or the minimum time of observation of a target (which is used

as duration for the monitoring actions).

For instance the first three actions in Listing 6.5, concerning the UAV 1, require to

store in a database a series of information in order to correctly decode them:

• The time required by UAV 1 to take off. This information is encoded in initial

state via the numerical fluent (Time-take-off UAV 1 AIRPORT 1) and its

value is 120 seconds (see row 32 in Listing 6.3).

• The time required by UAV 1 to move from the location L5 to the location

L11. This information is encoded in initial state via the numerical fluent
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(time required L5 L11 UAV 1), its value is 145 seconds and it is used as

duration of the transfer action.

• The minimum duration of observation of target T3 required by the ObsReq4

in the problem requirements (as specified in 5.1). This information is encoded

in initial state via the numerical fluent (Time-min-obs T 4 3), its value is

180 seconds and it is used as duration of the monitoring action.

• The mapping between the Site2D L4, L5 and L11 (which are the locations

involved in the first three actions) and their spatial information in terms

of coordinates in space. These information must be stored in the database

during the encoding but they are not encoded in PDDL files. They are useful

in order to decode the route that the UAV must perform. If the encoding

process executed any approximation on paths in order to reduce the number

of locations given to the planner (e.g. the representation of LOC target with

only two points), also those operations must be taken into account in this

phase in order to provide a correct representation of the agent’s route (e.g.

by retrieving the coordinates of the points of the LOC).

• The mapping between the Sensor S 1 and the actual sensor’s information,

such as its identifier or its type. In the running example S 1 corresponds to

the device D2. In a real world UAV problem these information would be, for

instance, the identifier of the sensor loaded on board the agent and its type

(e.g. Active Radar 12345 ).

This kind of information is used in order to decode the planner solution and

obtain a annotated plan which contains all the interesting and useful information

to generate a consistent solution representation easy to read by the end user.

As well as in temporal planning the decoded solution, in fact, is then used to

build a Gantt Diagram of the mission and a visual representation on a map of

the routes of the UAVs involved. Notice that while in temporal planning only

spatial representation requires storing information into a database, in numerical

planning it is required also by temporal representation. The decoding process

consists first of all in a decomposition of the plan in separated plans, one for each

UAV involved in the mission. Every action in the plan is then decoded in a task

associated to a UAV (and to its devices) and in a sequence of waypoints involved in

the action. As well as in temporal planning action’s locations (Site2D in PDDL)
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are translated in waypoints of the route of the plan according to the action’s type.

For some action in the plan there is no corresponding UAV’s task and they are

not explicitly reported in user’s solution. It is the case of the wait on ground

actions which are simply used to retrieve information on the time of takeoff of

the UAVs. Finally other actions are simply ignored during decoding because they

don’t contain relevant information for the user. It is the case of the enabling target

observation actions.
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Chapter 7

Experimental evaluation

In this chapter we present a series of experiments we performed. We encoded the

class of problems and its extensions described in chapter 3 in both numerical and

temporal models (as reported in chapters 5 and 6). We analyze how some of the

main state-of-art numerical and temporal planners are able to deal with the classes

of problems.

In the first part of the chapter we present a series of experiment performed on

a dataset of synthetic problems automatically generated. These data allow us to

analyze the complexity of the classes of problems and to compare both models and

planners in terms of solution’s quality, computational cost and planners’ coverage.

It is worth noting that because problems are synthetic and their numeric values

are randomly generated, some of them may be very constraining for planners. For

instance a problem involving only two UAVs and four target observations may

specify a set of temporal constraints on observability of targets so strict (even if

problems encountered in the real word are often not so hard) that planners may

not find a solution in reasonable time. The results of the experiments should then

be analyzed w.r.t. these considerations. However the main purpose of our work

concerns the capability to solve real-world problems.

In the second part of the chapter therefore we present in detail some real-world

multi-UAV multi-target planning scenarios and the results that can be obtained

with both numerical and temporal planning. In analyzing these scenarios we per-

formed the experiment by using the planners which offered the best performances

according to the results of the synthetic cases.
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planner metric-ff lpg lprpg-p symba colin popf2 yashp3 tfd

type num num num num n&t n&t n&t tem
optimization yes yes yes yes no yes no yes
typed repres. yes yes yes yes yes yes yes yes
negative cond. yes yes no yes yes no no yes
ADL cond. yes yes no no yes no no yes
conditional eff. yes yes no yes yes no no yes
num. state var. yes yes yes yes yes yes no yes
til - - - - yes yes no no
continuous eff. - - - - yes yes no no
further req. - - - - - cplex - -

Table 7.1: A table showing the PDDL features supported by some of the
main state-of-art available numerical and temporal planners. The type feature
indicates the type of planning problems supported by the planner (num, if the
planner supports only numeric problems, temp if it only supports temporal
problems, n&t if it supports both types). The type til indicates timed initial
literals, the PDDL feature introduced in PDDL 2.2 and described in 2.1.2.

CPLEX is an optimization software package which is required by POPF2.

7.1 Planner presentation

The choice of the planner to use is often a difficult choice because it is neces-

sary to mediate between expressive power and efficiency. Different planners, in

fact, usually support different subsets of the language’s features. Table 7.1 shows

the PDDL features involved in the running class of problems that are supported

by some of the main state-of-art available planners. The tables compares eight

numerical and temporal planners. While some of them only supports either nu-

merical (e.g. Metric-FF, LPG ([32])) or temporal (e.g. TFD) problems, others

can be employed both in numerical and temporal planning (e.g. Colin, POPF2,

YASHP3). Timed initial literals and continuous effects are PDDL features which

can be employed only in temporal planning by using durative actions, therefore

numerical planners don’t support them. However it is worth noting that they

aren’t mandatory to perform temporal planning and some planners (e.g. TFD)

doesn’t support them.

It is easy to see that the most versatile planner among those presented, in terms of

supported PDDL features, is COLIN. Because of its versatility in handling PDDL

2.1 and 2.2 features it is still a state-of-art planner and can be employed (as

well as POPF2) both with numeric and temporal models. Planners supporting

continuous change are obviously more complex than others which support less
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features. COLIN and POPF2 are the only two planners supporting continuous

numeric effects, which play a critical role in modeling temporal problems in UAV

domain (see the discussion in chapter 5). TFD and YASHP3 despite they are more

recent temporal planners (they entered the IPC-2011 and IPC-2014 competitions),

don’t support such feature, therefore they don’t guarantee actions’ contiguity.

7.2 Synthetic examples

In this section we report the results of an extensive experimental evaluation per-

formed on a dataset of synthetic problems of UAV domain.

We defined a test bed of multi-UAV problems with multiple target observation

requests. We defined three main classes of examples based on the dimensionality

of problems in terms of number of UAVs and targets involved:

• Class 2U6T involves two UAVs and six targets.

• Class 3U8T involves three UAVs and eight targets.

• Class 4U10T involves four UAVs and ten targets.

The definition of these classes of examples is due to two main reasons. On one hand

problems involving less of six targets are easily solved by the most of planners and

don’t give us useful information. Planners start instead being distressed in solving

problems involving more than six targets. By choosing these classes of examples

we are then able to perform a more significant analysis on planners capabilities.

On the other hand the real-world scenarios in which we are interested usually

involve not more than three UAVs because of the logistic and operative difficulties

in simultaneously coordinate integrated missions (we consider missions requiring

MALE or MAME UAVs). Therefore we limited the number of UAVs to four.

Notice that for simplicity there is only one observation request for each target

involved in problems. Furthermore in this synthetic examples we consider only

Point target.

We specialized each class according to the classes of problems defined in chapter

3. In particular we defined four subclasses of examples of increasingly complexity,

which can be combined between them:
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• Class UAV (U) involves UAV problems without any temporal constraints

between different target observations or specific temporal windows on target

observation. Therefore targets can be observed at every time point during

the mission and there is no precedence constraint. Moreover target observa-

tions are a priori assigned to UAVs.

• Class MULTIOBS (M) involves UAV problems specifying temporal con-

straints between different target observations. This class of problems is spe-

cialized in four other subclasses according to the number of temporal con-

straints: the first subclass involves one constraint, the fourth involves four

different constraints.

• Class WINDOWS (W) involves UAV problems specifying specific tem-

poral windows on target observations.

• Class FREE (F) involves UAV problems in which target observations are

not assigned to specific UAVs.

The complexity of problems we analyze is therefore due to three main aspects:

the problem dimensionality (i.e. the number of agents and targets involved), the

types of constraints (i.e. to which extension of the baseline class U the problem

belongs) and the planning model adopted. In the following sections we’ll see that,

despite dimensionality of problems is an important aspect to consider in problems

complexity, increasing its value doesn’t have a significant impact on problems

complexity compared to introducing the temporal constraints. Furthermore we

analyze how different types of constraints impact on the two planning models in

terms of difficulties they introduce.

We analyze all these aspects by evaluating the ability of planners to solve the

problems in terms both quantitative and qualitative.

For each combination of the classes of examples above reported we randomly gen-

erated ten different problems in both numerical and temporal formalisms, and we

fed them to six of the planners above reported. In particular we used two numeric

planners (Metric-FF and LPG) and three temporal planners (Colin, POPF2 and

TFD). The selection of the set of planners was due to the features they support.

In particular we discarded YASHP3 because of its lack of support to most of the

PDDL features we used in our modeling. It is worth noting that both COLIN and

90



CHAPTER 7. EXPERIMENTAL EVALUATION 91

POPF2 are also able to due with numerical planning, therefore we employed them

also in solving such type of problems.

We obtained a dataset of 600 different problems encoded in both numerical and

temporal formalism. We fed them to each planner with a timeout of 180 seconds

for every problem1 and we obtained a huge set of 4200 different results (2400

concerning numerical problems and 1800 temporal ones). Notice that the choice

of 180 seconds as timeout is due to two reasons: because we are studying an off-

line approach to automated planning (therefore we can consider 3 minutes as a

reasonable time to search for a solution) and because state-of-art planners are able

to find solutions in tens of seconds or few minutes.

In our experiments we adopted two different versions of the domain for each plan-

ning model. In particular we defined a domain able to handle problems with

assigned target observation and a domain able to handle problems with no assign-

ments. Furthermore, because many planners don’t support negative conditions

we defined our domains without using that formalism. In order to be able to use

the temporal planner TFD, which doesn’t support continuous effects, we also de-

fined another different domain, employed only by this planner and not containing

the mechanism described in 5.3 which guarantees contiguity of actions. Therefore

solutions found by TDF in UAV classes of examples don’t provide any guarantee

in terms of actions contiguity. However while they still guarantee that actions of

the same UAV don’t overlap, we decided to test it even without the support to

continuous changes, obtaining potentially invalid plans for UAV domain. However

because of the TDF’s ability to build low makespan plans, the solutions were often

valid and competitive with the ones of the other planners.

In the following sections we first analyze how dimensionality of problems impact

on their complexity. This allows us to also compare the set of planners in terms

of coverage and plans quality. After finding the best competing planners we’ll use

them to analyze in detail the impact of the introduction of different constraints

on problems complexity w.r.t. the two planning models.
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Class 2U6T Class 3U8T Class 4U10T Tot
LPG 99/200 94/200 76/200 269/600
COLIN 86/200 60/200 54/200 200/600
POPF2 65/200 48/200 35/200 148/600
Metric-ff 26/200 4/200 0/200 30/600

Table 7.2: A comparison between the numerical planners’ coverage. Every
cell reports the number of problems of a certain class solved by a planner, out
of a total of 200 problems. Therefore the Tot column reports the total number

of problems solved by the planners, out of a total of 600.

Class 2U6T Class 3U8T Class 4U10T Tot
COLIN 159/200 130/200 104/200 393/600
TDF 90/200 89/200 88/200 267/600
POPF2 0/200 0/200 0/200 0/600

Table 7.3: A comparison between the temporal planners’ coverage. Every cell
reports the number of problems of a certain class solved by a planner, out of a
total of 200 problems. Therefore the Tot column reports the total number of

problems solved by the planners, out of a total of 600.

7.2.1 Planners comparison

Tables 7.2 and 7.3 report a comparison between planners in terms of coverage

w.r.t the classes of examples. Tables 7.4 and 7.5 respectively report a comparison

between the three top planners of our competition in numerical planning and a

comparison between the two top planners in temporal planning. The performances

of the systems are measured according to the International Planning Competition

metrics. Given a parameter p (plan cost), the score of a case for the system

(planner) s in a set of tested systems S is defined by means of bestV alue(p,S)
value(p,s)

. For

the time score, let T ∗ be the minimum time required by any planner, the formula

1/(1 + log10(T/T
∗)) is used to evaluate the performance of a system which spent

T sec to solve the case. Cases solved in less than 1ss take the maximum score 1.

Coverage scores 1 for solved case, 0 otherwise. The total score for a domain is the

sum of scores obtained for each case in that domain.

In numerical planning LPG outperformed all the other planners both in quantita-

tive and qualitative terms. LPG is a planner based on local search and planning

graphs with a search scheme inspired by SAT-problems solvers. However it is worth

noting that it was able to find a solution only for problems in which no constraints

1All planning was executed on a machine equipped with SO Linux Mint 12 64bit, Intel Core
i3-2367M CPU@ 1.40GHz x 4, 4GB di RAM.
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LPG COLIN POPF2
Coverage 269 200 148
Plan quality 263,40 174,59 141,20
Time 259,78 182,23 77,56

Total 792,19 556,82 366,76

Table 7.4: A comparison between numerical planners.

COLIN TDF
Coverage 393 267
Plan quality 344,10 263,62
Time 340,94 240,45

Total 1078,04 771,08

Table 7.5: A comparison between temporal planners.

on target assignment were specified. The planner COLIN, which ranked second

a number of solved problems similar to LPG, was instead able to solve problems

belonging to any class. The POPF2 planner, which is built on the implementation

of COLIN ranked third and despite its support to cost-optimisation it wasn’t able

to outperform COLIN in terms of plan’s quality.

In temporal planning COLIN outperformed all the other planners in quantitative

terms. The strongest temporal planner competitor of COLIN is TFD. Because

of the lack of support of timed initial literals it was unable to solve any problem

involving targets’ observability windows. Despite this it was able to solve a total

number of problems quite similar to COLIN. In fact it was the only temporal

planner able to solve before the timeout a good rate of the submitted problems

that meet its language requirements (the 85%). Furthermore, thanks to its opti-

mization capability its solutions always outperformed the COLIN ones when both

planners found one. POPF2 planner instead wasn’t able to solve any temporal

problem. It was mainly due to an incompatibility between CPLEX and the tem-

poral formalisms we adopted.

In domains which don’t require neither timed initial literals or continuous effects,

we consider TFD as the best planner of those considered. For instance if the

class of problems to solve is the baseline class described in 3.1, TFD is the best

choice. However, as we already reported, the UAV domain requires contiguity

between actions and it can be forced in temporal planning only through the use

of continuous numerical effects. Since TFD doesn’t support this PDDL feature it

doesn’t provide any guarantee on contiguity actions. Without continuous effects
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U M M+W M+F W F W+F W+F+M
Class 2U6T 66,7% 29,2% 15,0% 46,7% 66,7% 100,0% 100,0% 40,8%
Class 3U8T 66,7% 23,3% 7,5% 37,5% 66,7% 100,0% 90,0% 35,8%
Class 4U10T 66,7% 24,2% 9,2% 33,3% 60,0% 86,7% 66,7% 28,3%
Total 66,7% 25,6% 10,6% 39,2% 64,4% 95,6% 85,6% 35,0%

Table 7.6: A comparison between the classes of examples w.r.t. the set of con-
straints involved, in numerical planning. Every cell reports the rate of problems

of a class with a certain set of constraints solved by the set of planners.

U M M+W M+F W F W+F W+F+M
Class 2U6T 100,0% 90,0% 33,8% 93,8% 50,0% 45,0% 40,0% 35,0%
Class 3U8T 100,0% 90,0% 21,3% 96,3% 45,0% 15,0% 10,0% 23,8%
Class 4U10T 100,0% 81,3% 8,8% 93,8% 40,0% 15,0% 5,0% 16,3%
Total 100,0% 87,1% 21,3% 94,6% 45,0% 25,0% 18,3% 25,0%

Table 7.7: A comparison between the classes of examples w.r.t. the set of con-
straints involved, in numerical planning. Every cell reports the rate of problems

of a class with a certain set of constraints solved by the set of planners.

the temporal model can guarantee that a UAV doesn’t perform more than one

actions concurrently (except for stay on trg and monitor actions), but it cannot

provide any guarantee that there aren’t ”holes” between actions in the final plan.

Therefore TFD, even if it has proven to build small makespan plans, is not the

best planner for a UAV domain.

Notice that no problem was declared unsolvable by planners. This is not surprising

because of the characteristics of the synthetic problems we generated. In fact the

constraints are generated so as to always be feasible.

Starting from the previous comparison, despite it lost against LPG in numerical

planning, we considered COLIN as the best planner for our purposes, and we’ll

use it in the following section in order to analyze real world scenarios. In fact in

the domain we are studying, the automatic assignment of observations to UAVs

is only a possible extension and in real world missions usually it is the human

operator which decides the assignments according to his knowledges.

7.2.2 Classes of problems comparison

Tables 7.6 and 7.7 report a comparison between the three main classes of problems

in terms of rate of problems solved for each subclass of examples w.r.t. the planning

models. The tables are useful in order to evaluate how the extensions of the UAV
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class of problems impact on problems’ complexity. Notice that in these analysis

we didn’t take into account the worst planner in the previous competition (Metric-

FF in numerical planning and POPF2 in temporal planning) in order to have less

noisy data.

First of all we can note that in both models incrementing the number of UAVs

and observation requests doesn’t significantly impact on problems’ complexity. In

fact the number of solved problems of the UAV class (see for instance columns U,

M or W ), doesn’t significantly change when increasing the number of UAVs and

targets.

We can note that while the two models behave similarly in such case, they be-

have differently when constraints are introduced in problems. Extending the class

of problems with temporal constraints between target observations in numerical

model, has a strong impact on problems’ complexity. In temporal model, instead

these constraints don’t influence so heavily. Let us compare column M with col-

umn U in both tables: while in numerical planning the rate of solved problem is

halved, in temporal planning it is only reduced by 10%.

This can be also easily noted in Fig. 7.1 ad 7.2 which report two line charts dis-

playing the trend in the number of solved problems in both models as the number

of constraints grows. Notice that while numerical model allows to more easily

solve problems with a small number of constraint between different observations,

temporal planning has a more stable behavior when the number of constraints

grows.

Conversely extending the class of problems with targets observations’ windows

has a more significant impact on problems’ complexity in temporal planning than

in numerical planning. While numerical model is almost not influenced by the

introduction of such type of constraint, temporal model’s rate of success is instead

halved.

It is worth noting that when the constraints are combined between them, they

lead to a sharp increase in difficulty of solving problems in both models (e.g. see

columns M+W+F and M+W ) and the number of solved problems become really

small). It is also easy to see that in both Fig. 7.3 and Fig. 7.4 which report the

rate of solved problems divided according to the set of constraints.
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Figure 7.1: A line chart displaying the trend in the number of solved problems
in numerical planning as the number of temporal constraints between target

observation grows.
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Figure 7.2: A line chart displaying the trend in the number of solved problems
in temporal planning as the number of temporal constraints between target

observation grows.

Finally we can see that, against expectations, in numerical planning requiring the

planners to autonomously chose which UAV to use to satisfy an observation re-

quest, doesn’t have significant consequences on problems’ complexity. Conversely

it seemed to simplify the problems.
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Figure 7.3: A histogram displaying the rate of solved problems in numerical
planning w.r.t. the set of constraints involved.
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Figure 7.4: A histogram displaying the rate of solved problems in temporal
w.r.t. the set of constraints involved.

solved
Numerical 39%
Temporal 55%

Table 7.8: A comparison between the two planning models presented in this
thesis in terms of the rate of problems solved by the set of numerical and tempo-
ral planners (without considering Metric-FF in numerical planning and POPF

in temporal planning).
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7.2.3 Models comparison

In this section we perform some more detailed analysis on differences between the

two models. Table 7.8 reports a comparison between them. It displays the number

of problems solved by the two sets of numerical and temporal planners. Notice

that temporal problems are more easily solved compared to numerical problems

within the same timeout.

As we stated above, the two models differently react to the extensions of the

class of problems with different constraints. In particular data showed that in

numerical planning it is difficult to solve problems involving temporal constraints

between target observations, while in temporal planning it is more difficult to solve

problems involving temporal windows for targets observation and the automatic

assignment of observations to UAVs. These behaviors are mainly due to the way

constraints are modeled in both formalisms. In fact in temporal planning it is

easy to express in actions schema a series of requirements on different targets ob-

servations by using the PDDL 2.2 syntax which allows to express conditions at

specified time points. In numerical planning instead it is necessary to simulate

time passing and agents coordination in time is not automatically performed by

the planner, therefore introducing constraints which require a strict coordination

between agents leads to a significant increase of complexity. Conversely, defining

temporal windows of observability of targets requires more work to a temporal

planner, which treats these constraints as actual temporal information, than a nu-

merical planner which treats them as numerical constraints ignoring time concept.

In order to take into account in our considerations of the planner efficiency we

isolated the results of COLIN (see Table 7.9), which is the only planner among

those considered able to handle both numerical and temporal problems. The first

column reports the rate of problems solved by COLIN in both models. These

values comply with the general observation that temporal problems are easier to

solve (COLIN solved nearly twice as many problems). We also compared the

two solutions provided by COLIN, when it was able to found a solution for the

same problems in both formalisms (column 2). The solution provided by COLIN

(it doesn’t perform any optimization) are roughly equivalently in temporal and

numerical planning in qualitative terms. Furthermore the last column of table

shows that only 6% of problems (35 out of 600) were solved in numerical model

when COLIN didn’t find a solution in temporal one.
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solved better find
Numerical 34.5% 51% 6%
Temporal 65.5% 49% 37%

Table 7.9: A comparison between the behavior of planner COLIN in solving
problems with the two planning models presented in this thesis. solved column
reports the rate of solved problems in both models. better column reports, for
each planning model, the rate of times the solution found by COLIN with that
formalism was better than the one found with the other model. The last column
reports, for each planning model, the rate of times COLIN found a solution with

that model while it didn’t with the other one.
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Figure 7.5: A line chart displaying the rate of problems solved by COLIN
with the numerical model w.r.t. the set of constraints involved.

COLIN performances also confirm the considerations made on the complexity

introduced in models by the different extensions of the class of problems. Fig. 7.5

and 7.6 report two line charts displaying, for each model, the rate of problems

solved by COLIN w.r.t. the set of constraints involved. It is easy to see that

with numerical model COLIN finds more difficult to solve problems involving

constraints between different target observations. Conversely with temporal model

these problems are more easily solved, while the planner finds more difficult to solve

the problems involving targets observability windows.

Finally we can say that, generally speaking, temporal model is more performing

than numeric one w.r.t. both problems’ complexity and plans’ quality. Further-

more as described in the previous chapters it requires a less complex encoding and

decoding processes. However its difficulty in solving problems involving the ex-

tensions of the targets windows of observability can make it less performing than
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Figure 7.6: A line chart displaying the rate of problems solved by COLIN
with the temporal model w.r.t. the set of constraints involved.

numerical model and how we’ll see in the following section, this type of constraints

is quite common in real-world UAVs scenarios.

7.3 Real-world scenarios

In this section we describe some real world scenarios in order to give the reader

a more practical view of the capabilities of developed models. The examples

of missions we report are based on real scenarios studied during the industrial

research project SMAT-F2 and they are considered of possible interest in real

world. The previous described synthetic problems involve objects which don’t

refer to real world entities (e.g. the used UAVs are only described by an identifier

and they don’t refer to any real type of aircraft). Furthermore numeric fluents

(e.g. the distance between targets or the minimum duration of observations) are

characterized by randomly generated values. In this section we describe missions

in which the involved objects refer to real world entities. The targets considered

correspond to real entities defined by specific geographical locations. The distances

between locations are calculated according to great-circle distance ([33]). The

UAVs features (e.g. cruise speed) refer to real MALE and MAME aircrafts as

well as their ability to load on board a certain suite of sensors, and the airports

involved in scenarios are real airports in which such types of UAV may likely be

located.
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UAV Type Speed Sensor Suite
MAME N4 MAME 46 m/s EO + Radar
MALE N7 MALE 50 m/s EO + Hyperspectral

Table 7.10: A table reporting the available fleet of UAVs and their main
features.

In solving the following problems we adopt the planner COLIN which, as shown

just above, is the most complete and versatile of the analyzed ones and also allows

us to easily compare numerical and temporal models.

7.3.1 The overall scenario

Before introducing and describing the specific tests, let us consider the overall

scenario involving the North West part of Italy which will be used along the tests.

Let us suppose the logistic base for MALE and MAME UAVs is the airport of

Levaldigi and that for our missions we have the simple fleet of UAVs with the

associated suite of sensors reported in Table 7.10 2.

The tests we describe in this section spread over two different days and aim to

show a series of difficulties that may came out in real world scenarios.

Table 7.11 reports the main pieces of information, divided by days, of the obser-

vation requests we’ll use in the scenarios. It is worth noting that many pieces

of information are omitted in the table for sake of readability (e.g. geographical

information of targets). Some of them, however, are visible in the following maps

representations. Furthermore, as mentioned in previous chapters, we perform some

approximations on targets representation. In particular Point targets are repre-

sented just via their coordinates, while targets of type LOC are approximated via

a polygonal chain represented by a sequence of vertices.

It is also worth noting that the couples of observation requests 6− 7 and 11− 12,

which involve the same target (CentraleTrino) in the same day with the same

temporal constraints but with different sensors (EO and Radar), are constrained

by the following Equals constraints:

• Equal(6, 7, 10)

2Notice that, for simplicity, we are assuming the fleet is available all the days we need it.
However, usually the availability of UAVs in specific dates and airports depends on logistic
aspects which are beyond the purposes of this thesis.
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OR Date Target Type Sensor Obs. Win. MinDur
1 02/08/16 Confl-Orco-Po Point EO 8.00 - 13.00 1m
2 02/08/16 PontePo-Verolengo Point EO 8.00 - 13.00 1m
3 02/08/16 Confl-DoraBaltea-Po Point EO 8.00 - 13.00 1m
4 02/08/16 PontePo-Crescentino Point EO 8.00 - 13.00 1m
5 02/08/16 Confl-Sesia-Po Point EO 8.00 - 13.00 90s
6 02/08/16 Centrale Trino Point EO 8.00 - 13.00 5m
7 02/08/16 Centrale Trino Point Radar 8.00 - 13.00 5m
8 02/08/16 TangTO LOC EO 7.40 - 8.30 NA
9 02/08/16 A4(TO-NO) LOC EO 7.40 - 10.30 NA
11 03/08/16 Centrale Trino Point EO 8.00 - 13.00 5m
12 03/08/16 Centrale Trino Point Radar 8.00 - 13.00 5m
13 03/08/16 TangTO LOC EO 7.40 - 9.00 NA
14 03/08/16 A4 (TO-NO) LOC EO 7.40 - 9.00 NA
15 03/08/16 A21(TO-Tortona) LOC EO 7.40 - 9.00 NA

Table 7.11: A table reporting the main pieces of information of observation
requests. The column Sensor reports the sensors to use to observe the tar-
gets: EO stands for Electro-Optical. The column Obs. Win. reports the time
windows in which targets are observable. The NA values in MinDur column
(reporting the minimum durations of observation of targets) for LOC targets is
due to the fact that we allow linear targets observation only by following their
paths. Therefore the time of observation depends on target’s length and UAV’s

cruise speed.

• Equal(11, 12, 10)

which specify the interest in observing the couples of targets with both the sen-

sors in the same time window. Notice that we consider these constraints as also

implicitly specifying that the two observations must be performed by the same

UAVs, that is data fusion is required.

In the following scenarios we will also introduce some additional constraints be-

tween targets observation.

A last remark about observation requests concerns the apparent similarities be-

tween some of them. In some cases they are exactly the same but the date (see the

two couples of observations of CentraleTrino). In other cases there are apparently

minor modifications (e.g observation requests 8 and 13 differ just for the time

window of observation). We will see that these minor changes have a significant

impact on the mission requirements and consequently also on the final plan.

The description of the overall scenario shows that all the following scenarios belong

to the class of problems above called M+W which involves, besides UAVs, both
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temporal constraints between different target observations and time windows of

target observability. As reported in the previous section this is one of the most

tricky class to solve. We describe four scenarios of increasingly complexity:

• Scenario A is the simplest scenario we report. It involves only 1 UAV

that must perform 4 observations within specific temporal windows. Two

observations are also temporally constrained among them. This scenario

allows us to make some introductory considerations.

• Scenario B involves 2 UAVs and 5 target observations. Observations are

constrained to specific temporal windows that, in some cases, are particu-

larly strict. Furthermore two observations are temporally constrained among

them. This scenario allows us to make some considerations on targets assig-

ment.

• Scenario C is a more complex scenario. It involves, as scenario B, 2 UAVs

and 5 target observations constrained within specific temporal windows. In

this case, while temporal windows are not particularly strict, the problem

specifies 2 constraints between different observations. The difficulty lies in

the fact that these observations, which involve three different targets, are

assigned to different UAVs.

• Scenario D is the hardest scenario we report. It involves only 1 UAV

that must perform 9 observations within specific temporal windows. The

problem also specifies 3 constraints among 6 different observations. This

final scenario, as well as Scenario C, allows us to make some considerations

about real-world problems complexity and about the limits of both planners

and planning models.

7.3.2 The results in testing Scenario A

The first scenario we report concerns a simple mission with the following require-

ments:

• Observation requests 6, 7, 8 and 9. They concern the observation of the point

target CentraleTrino, the LOC target TangTO (representing the highway

around the city of Torino) and the LOC target A4(TO-NO) (representing
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the stretch of highway between Torino and Novara). The details of the

requests, such as the time windows of targets observability and the sensors

to be used, are reported in the first section of Table 7.11.

• The temporal constraint Equal(6, 7, 10), which specifies that the monitoring

actions covering the observation requests 6 and 7 must be performed by the

same UAV in the same temporal interval and the durations of the two actions

must not differ by more than 10 seconds.

• All the observations must be performed by the same UAV MAME N4, which

has loaded on board a sensor suite compatible with the sensors requested.

• The mission must be performed between the 7 a.m. and 12 a.m.

• The maximum duration of the mission is 11000 seconds.

A first consideration we can do is that the planner COLIN doesn’t perform any

optimization. This means that the first plan it returns is potentially suboptimal

w.r.t. the metric defined in problem and it may be considered a bad plan by a

human operator. While in the previous section we have not dealt with this aspect,

here we do it. The solutions we report in the following scenarios are obtained (when

not specified otherwise) with an any-time approach that iteratively invokes COLIN

by adding to the problem new constraints based on the previous solutions (e.g. if a

solution has a final cost, in terms of total-fly-time, of 9000 seconds, we invoke

again the planner with a new goal requirement which specify that total-fly-time

must be < 9000). This mechanism forces the planner to search for a solution better

than the previous one, until it reaches the timeout.

Figure 7.7 reports a map displaying the targets involved in the first day we defined.

The selected observation requests correspond to those in the running scenario: the

observations of the two LOC targets and of CentraleTrino (which in the map is

the second Point target starting from right).

It is worth noting that if we execute COLIN only once it returns, as expected,

a plan which is not optimal w.r.t. the metric total-fly-time. Listing 7.1 and

Fig. 7.8 respectively report a decoding of the plan provided by COLIN and a

graphical representation of it on a map. It has a cost of 8427 seconds but it is

obviously an unacceptable plan for a real mission. In fact there is no specific

temporal constraint that requires the UAV starts its observation of target TangTo
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Figure 7.7: A map displaying the targets related to all the observation requests
defined in the first day (02/08/2016). The blue lines represents the LOC targets,

tha camera icons the observation requests of point targets.

Figure 7.8: A map displaying the first suboptimal path (plan cost 8427 sec.)
planned by COLIN with numerical formalism for UAV MAME N4 in Scenario

A.
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Figure 7.9: A map displaying the optimal path (plan cost 7698 sec.) for
UAV MAME N4 in Scenario A, obtained by iteratively feeding the problem to
COLIN with numerical formalism while adding more strict constraints on plan

cost.

from the northernmost point, therefore there is no reason to fly over the target

without monitoring it.

In this phase we adopted as metric in both numerical and temporal planning

the numerical fluent total-fly-time which represents the total time the entire

team of UAVs has been in flight during the mission and it is updated by all

the UAVs’ move actions. It allows us to take into account of the entire team’s

flight time, without considering the time spent waiting on ground. Minimizing it

means minimizing the time all UAVs stay on flight and therefore also the total

fuel consumption, as well as the entire mission makespan.

If we iteratively ask COLIN better plans (as shown above), in few seconds we are

able to obtain a much better solution (see Fig. 7.9).
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It is worth noting that by using a temporal model, instead of a numerical one, in

this case COLIN is able to find as first solution the optimal plan of Fig. 7.9.

Notice that the output of the decoding can be displayed to a human operator in

terms of both temporally annotated actions (also divided by agents) and a route

on a map. Notice also that the plan foresees the use of both Radar end EO on

CentraleTrino target (two simultaneous sensor tasks) as required in the mission

requirements (see rows 38-39 Listing. 7.1).

For sake of readability starting from now we omit (unless it is necessary) the tex-

tual representation of plans. It contains many specific details useful in real mission

planning but often unnecessary for our purpose.

1 ; Plan f o r UAV MAME N4

2 08 : 50 : 52 − 08 : 54 : 52 (240 sec ) Taking o f f from a i r p o r t : L e v a l d i g i

3

4 08 : 54 : 52 − 09 : 10 : 35 (943 sec ) Trans f e r ing to t a r g e t : Tangenzia leTor ino

5

6 0 9 : 1 0 : 3 5 . 6 9 4 − Flying through t a r g e t TangenzialeTorino ,

7 from 45.11820 la t , 7 .73470 lng

8 to 44.95980 la t , 7 .78296 lng (948 s e c s )

9

10 09 : 26 : 23 − 09 : 33 : 08 (405 sec ) Trans f e r ing to t a r g e t : TorinoNovara

11

12 0 9 : 3 3 : 0 8 . 6 9 4 − Flying through t a r g e t TorinoNovara ,

13 from 45.11940 la t , 7 .71163 lng

14 to 45.46840 la t , 8 .67987 lng (1956 s e c s )

15

16 10 : 05 : 44 − 10 : 21 : 51 (967 sec ) Trans f e r ing to t a r g e t : Centra leTr ino

17

18 10 : 21 : 51 L o i t e r on t h i s p lace

19

20 10 : 26 : 51 − 11 : 00 : 16 (2005 sec ) Trans f e r ing to a i r p o r t : L e v a l d i g i

21

22 11 : 00 : 16 − 11 : 05 : 16 (300 sec ) Landing to a i r p o r t : L e v a l d i g i

23 1 1 : 0 5 : 1 6 . 6 9 4

24

25 ; Plan f o r s u i t e sensor EO+Radar , mounted on MAME N4

26 09 : 10 : 35 − 09 : 26 : 23 (948 sec )

27 Monitoring t a r g e t Tangenzia leTor ino Using s e n s o r s [ eo ]

28

29 09 : 33 : 08 − 10 : 05 : 44 (1956 sec )

30 Monitoring t a r g e t TorinoNovara Using s e n s o r s [ eo ]

31

32 10 : 21 : 51 − 10 : 26 : 51 (300 sec )

107



7.3. REAL-WORLD SCENARIOS 108

33 Monitoring t a r g e t Centra leTr ino Using s e n s o r s [ radar , eo ]

Listing 7.1: A decoding of the first suboptimal numerical plan provided by

COLIN in solving the Scenario A.
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Figure 7.10: A map displaying the targets related to all the observation re-
quests defined in the second day (03/08/2016) and used in Scenario B.

7.3.3 The results in testing Scenario B

Scenario B allows us to make some considerations on targets assignments. It is

described by the following requirements:

• All observation requests of the second day (observation requests 11−15). See

the details of all the requests in the second section of Table 7.11. Notice that

the observation requests 13 and 14 contain a revised version of the temporal

constraints on the target observation w.r.t the requests 8− 9 of the previous

scenario. Moreover there is a new observation request involving the LOC

target A21(TO-Tortona).

• The temporal constraint Equal(11, 12, 10), which specifies that the monitor-

ing actions covering the observation requests 11 and 12 must be performed

by the same UAV in the same temporal interval and the durations of the

two actions must not differ by more than 10 seconds.

• The mission must be performed between the 6 a.m. and 12 a.m.

• The maximum duration of the mission is 12000 seconds.
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Figure 7.10 reports a map displaying the targets involved in the running scenario.

First of all we can notice that all the observations cannot be performed by only

one UAV. In fact the temporal windows specified by observation requests 13− 15

are too strict. No UAV is able, according to their cruise speed, to fly over the

three specified highways in less than 80 min. Therefore no planner would be able

to find a solution for this problem if all targets observations are assigned to one

UAV.

In deciding the assignments a human operator may decide to assign the requests

to two different UAVs as follows:

• Observation Requests 11, 12 and 13 (TangTO and CentraleTrino) to MALE

N7

• Observation Requests 14 and 15 (A4(To-No) and A21(To-Tortona)) to MAME

N4

However also these assignments make the problem unsolvable. In fact even if the

observations are subdivided between the two different UAVs, MAME N4 is not

able to fly over the two assigned highways within the specified time windows. In

fact the airport Levaldigi is located between the two targets. Therefore the UAV,

after monitoring one of the highways, must fly for too much time before to be able

to observe the remaining target, violating the time constraints.

A feasible set of assignments for this problem is instead the following one:

• Observation Requests 13 and 14 (TangTO and A4(To-No) to MAME N4

• Observation Requests 11, 12 and 15 (CentraleTrino) and A21(To-Tortona))

to MALE N7

For this last problem definition, the planner is able to easily find with numeric

model (by using seconds as unit of measure) the optimal multi-agent plan of cost

13716 sec.. Fig. 7.11 and 7.12 report the paths planned for the team of UAVs,

together with some pieces of information on the scheduled monitoring tasks of the

sensors loaded on board the aircrafts.

This scenario allows to notice how in real world planning, sometimes the human

operator who must perform some operations may find it difficult. For this reason
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Figure 7.11: A map displaying the optimal path for UAV MAME N4 in
Scenario B.

Figure 7.12: A map displaying the optimal path for UAV MALE N7 in Sce-
nario B.
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Figure 7.13: A map displaying the path for UAV MAME N4 in Scenario
B, obtained by the planner by automatically assigning observation requests to

UAVs.

the planning tools must support the operator in making decisions and allowing

to revising them when not feasible (we talk of Mixed-Initative Planning, which

is a spotlight theme of recent years, see for instance [34], [35] and [36] works).

A good Mixed-Initiative tool should be able to provide a solution to the human

operator by reducing as much as possible his effort. For instance the operator may

require the planner to find a solution by using a specific team of agent but without

constraints on the assignments.

In some cases this may also lead to a final plan that is better than the one obtained

with the fixed assignments made by the human operator. Fig 7.13 and 7.14 report

the paths planned for the team of UAVs in the running scenario when the planner

automatically assigns the observation requests. It is a slightly better plan than

the previous one (its cost is 13609 sec.). It proves that sometimes may be difficult

for a human operator manually evaluate all problem’s constraints and make the

optimal decisions.

However it is worth considering that sometimes an optimal plan is not necessarily

the best choice. For instance in the last multi-agent plan the trajectories of the

two UAVs intersect during the first transfer tasks. An expert human operator may

prefer a solution slightly less optimized which, however, can be considered more

robust.

It is finally worth noting that in this scenario numerical model easily allowed to

find a first solution in only 0.08 seconds with a cost of 14731 and finding the

final optimal solution required only 3 iterations of the anytime approach above
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Figure 7.14: A map displaying the path for UAV MALE N7 in Scenario
B, obtained by the planner by automatically assigning observation requests to

UAVs.

described for a total time of 2.26 seconds (with a final fourth iteration which

taken 39.54 seconds to declare the problem unsolvable, because of the constraints

too strict on total-fly-time). Conversely temporal model was less efficient and

it took 35.09 seconds only to find the first solution (the same of the first one found

with the numerical model) and it reached a timeout of 5 minutes without finding

a new solution.

7.3.4 The results in testing Scenario C

Scenario C allows us to make some further considerations on difficulties that may

emerge from targets assignments. The scenario is described by the following re-

quirements:

• The observation requests 1 − 5 of the first day. See the details of all the

requests in the first section of Table 7.11.

• The following temporal constraints:
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– Before(1, 3, 1, +∞), which specifies that the observation of Confl-

Orco-Po must end at least 1 second before Confl DoraBaltea-Po.

– Before(3, 5, 1, +∞), which specifies that the observation of Confl DoraBaltea-

Po must end at least 1 second before Confl-Sesia-Po.

• The mission must be performed between the 6 a.m. and 12 a.m.

• The maximum duration of the mission is 12000 seconds.

Let us suppose that the operator decides to plan the mission by using two UAVs

(this is not strictly necessary since just one of them is able to achieve the goals of

the mission). In particular he decides to assigns:

• Confl-Orco-Po and Confl Sesia-Po to MAME N4

• Confl DoraBaltea-P, PontePo-Verolengo and PontePo-Crescentino to MALE

N7

Notice that the two couples of target observations, which are assigned to different

UAVs, are related via a temporal constraint.

Such type of constraints is very tricky and they make planning even more difficult

than simple constraints between observations assigned to the same UAVs. In fact

the plan for MAME N4 cannot be performed independently on the plan of MALE

N7 since the decision on the observation of Confl-Orco-Po and ConflDora Baltea-

Po influences on the observation of Confl Sesia-Po and viceversa.

Planner COLIN wasn’t able to solve the problem with neither numerical or tem-

poral model. This confirms that real world problems, even involving only few

UAVs and targets may be very hard to solve. Fig. 7.15 reports a valid planf for

this mission. As we’ll see in section 7.4 it can be obtained by adopting a different

encoding process in numerical formalism which allows to express the values of nu-

merical fluents concerning time aspects by using milliseconds as unit of measure

instead of seconds.

7.3.5 The results in testing Scenario D

The scenario D we report is an extension of Scenario A. It is described by the

following requirements:
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Figure 7.15: A map displaying the optimal path for the team of UAVs MAME
N4 and MALE N7 in Scenario C. The figure also reports some pieces of infor-
mation which confirm the plan satisfies all the temporal requirements of the

mission.

• All observation requests of the first day (observation requests 1−9). See the

details of all the requests in the first section of Table 7.11.

• The following temporal constraints:

– Equal(6, 7, 10), as described in Scenario A.

– Before(1, 3, 1, +∞), which specifies that the observation of Confl-

Orco-Po must end at least 1 second before Confl DoraBaltea-Po.

– Before(3, 5, 1, +∞), which specifies that the observation of Confl DoraBaltea-

Po must end at least 1 second before Confl-Sesia-Po.

• All the observations must be performed by the same UAV MAME N4, which

has loaded on board a sensor suite compatible with the sensors requested.

• The mission must be performed between the 7 a.m. and 14 a.m.

• The maximum duration of the mission is 13000 seconds.

The task is very complex since a large number of POINT and LOC targets are in-

volved and there are also many temporal constraints among the target observations
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Figure 7.16: A map displaying the optimal path (plan cost 8276540 millisec.)
for UAV MAME N4 in Scenario D, obtained by iteratively feeding (as shown
above) the problem to COLIN with numerical formalism by using milliseconds

as unit of measure of temporal aspects.

that, as we observed in the previous section, significantly increase the problem’s

complexity. Furthermore the strict time windows of observation required by ob-

servation requests 8 − 9 make the problem really tricky. COLIN, in fact, also in

this case, wasn’t able to solve it in reasonable time with none of the two modeling.

However this kind of scenario describes a plausible real world mission and we’d

like to be able to solve it. By encoding all temporal aspects of the problems in a

way similarly to as we show in section 7.4 for the time windows of observability of

TangTo, we obtain a new version of the problem which COLIN is able to solve in

seconds. Furthermore by applying the optimizing approach we are able to find in

less than a minute the optimal solution reported in Fig. 7.16

It is also worth noting that the plan for this scenario is quite different from the

one obtained for Scenario A. In particular, the plan for Scenario D is not just an

extension of the one of Scenario A: in order to both optimizing the mission dura-

tion and satisfying the temporal constraints between the observation requests, the

planner is actually able to find a plan where target observations are opportunely
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performed. (e.g. the LOC target A4(Torino-Novara) is observed in the reverse

direction (from Novara to Torino)).

This scenario reveals the difficulties that can arise from real world problems even

if concerning a single UAV mission. State-of-art planners are still weak in easily

solving such type of problems and some intensive work is required in defining

domains and problems in order to be able to solve them.

7.4 A different encoding for numerical model

By analyzing the reasons of the problem’s complexity in section 7.2 we already no-

ticed that the temporal windows on targets observations lead to a heavy increase

in the level of complexity. In particular when they are too strict the planners easily

fail in finding a solution. Starting from these considerations we decided to modify

the units of measure used in defining time aspects in problems from seconds to

milliseconds. This allows to enlarge, from the point of view of the planner, the

observability windows of targets. For instance, while time window of observation

required by observation request 8 for the target TangTO (see Table 7.11) is ex-

pressed in seconds by the following two numerical fluents initialization:

(= ( E a r l i e s t−time−s t a r t−obs−t a r g e t TangTO) 2400)

(= ( Latest−time−end−obs−t a r g e t TangTO) 5400)

by using instead milliseconds as unit of measure we can express it as:

(= ( E a r l i e s t−time−s t a r t−obs−t a r g e t TangTO) 2400000)

(= ( Latest−time−end−obs−t a r g e t TangTO) 5400000)

It is easy to see that this approach, at the expense of a cleaner model, allows

to wide, from the point of view of the planner, the temporal windows of targets

observations and this leads to a reduction of the problems complexity

We also re-executed, with planner COLIN, the numerical problems of synthetic

experimentation and the results confirmed these considerations. Table 7.12 re-

ports a comparison between the planning models in terms of number of problems

solved by the planner COLIN. The numerical model with time values expressed in

milliseconds is able to solve almost twice the number of problem solved with time
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COLIN numerical msec. COLIN numerical sec. COLIN temporal sec
Solved 395/600 207/600 393/600

Table 7.12: A comparison between the planning models in terms of number
of problems solved by the planner COLIN.

expressed in seconds. Furthermore it solved about the same number of problems

solved by using temporal model.

It is worth noting that while time expressed in milliseconds helps COLIN in solving

problems with the numerical formalism, it is not helpful in temporal formalism.

Conversely it increases the planner’s difficulties in solving the problems because

of the internal time management.

7.5 Experiments conclusions

In this chapter we performed a series of experiments which allowed to analyze

the classes of problems we defined, the planning models and also the coverage of

different planners.

In the former part of the chapter we analyzed a dataset of synthetic problems

in order to evaluate the impact of the extensions of the UAV class of problems

on problems complexity. The execution of synthetic examples allowed us to also

evaluate different state-of-art planners and to choice the best (which resulted to

be COLIN) in order to perform a further more accurate set of experiments. In

fact, while during synthetic experiments problems were randomly generated and

their features weren’t specifically based on real-world elements, in the latter part

of the chapter we analyzed a set of real-world scenarios. In particular we reported

missions that, even if not particularly complex in terms of number of UAVs or

targets w.r.t. the previous synthetic problems, are able to undermine planners

because of the temporal constraints. These constraints, even if sometimes a bit

excessive, can be considered realistic and they show that automated planning is

still a difficult task, especially when time and temporal constraints are involved.
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Conclusions

In this thesis we addressed a class of real-world problems based on real world

domains involving teams of agents in which temporal and consumable resource

constraints are mandatory. We faced a series of increasingly complexity extensions

of a baseline class of problems which involves teams of generic robotic agents

whose objective is to observe a set of targets without any particular constraint.

We initially considered a specialization of the generic type of robotic agent, the

UAV, which is the class of agents on which we focused more in our work. Secondly

we introduced a type of temporal constraints among different targets observations.

Then we introduced a type of temporal constraints which specifies for each target

the time windows within it is observable. Finally we introduced a parallel level of

complexity requiring an automated assignment of observations to robotic agents.

This class of problems is particularly significant in many real-world applications. It

allows to express interesting problems concerning autonomous intelligent machine

(such as rovers, satellites, aircrafts or spacecrafts) acting in the real world. These

problems are clearly not trivial because of their numerical and temporal nature.

Dealing with this class of problems is therefore a complex task and many challenges

must be faced.

8.1 Thesis contributions

First of all it requires a great effort in building models which fully represent char-

acteristics and constraints typical of the domains. In fact a direct translation
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of missions requirements in a planning model formalism, through the planning

languages features, is not possible. An intense work of knowledge engineering,

involving abstractions and simplifications on domain’s objects is necessary. This

implies a significant effort in encoding phase and leads sometimes to modeling that

aren’t immediate to be understood in all of their aspects. However such type of

operations is necessary in order to be able to successfully employ general purpose

state-of-art planners.

The intense work required to encode the problems is also due to the limits of

both planning languages and planners. Planning languages (such as the latest

extensions of PDDL), in fact, don’t always provide easy ways to represent real life

concepts. Furthermore they often allow to represent some concepts and require-

ments differently from one extension to another. For instance, while in temporal

formalism it is possible to directly handle time and locate actions in time, in nu-

merical planning (in which there is no support to neither durative actions, timed

initial literals or continuous changes) it is necessary to explicitly represent time

through a series of numerical fluents. As we reported, this has a significant im-

pact both on actions schema definition and on the definition of fluents in the

PDDL domain, as well as on a different modeling of temporal constraints. Also

the newest PDDL temporal extensions (e.g. PDDL 2.2), however, still don’t allow

to easily take into account of many temporal aspects during planning and their

support to these concepts is still limited (e.g. it is not possible to easily specify in

PDDL domain definition any constraint by directly referring within actions model

to internal time information such as the current time point at which actions are

scheduled, as well as it is not possible to refer to the internal variable total-time

except in metric definition).

Also planners are important factors which make modeling planning problems dif-

ficult. The expressive power provided by planning languages (with the above

mentioned limits) is in fact further limited by planners capabilities which may not

support all possible features. Some state-of-art planners that proved to be par-

ticularly performing don’t support many PDDL features (e.g. temporal planner

TDF, which was able in our experiments to solve before the timeout the 85% of

the submitted problems that meet its language requirements and, thanks to its

optimization capability, to provide good quality solutions, doesn’t support timed

initial literals and continuous effects). Other planners do not support even ADL

features such as negative conditions, introduced in planning languages in order to
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overcome the STRIPS limits. This is limiting because many real life aspects are

easily (and sometimes only) representable with specific language features and the

lack of their support can lead to further unnecessary encoding difficulties. Plan-

ners are also limiting because their final solutions are not fully descriptive of all

the features encoded in problems. Sometimes it is not possible to fully understand

a planner’s solution without information about the initial problem definition. This

implies that planning must be supported by a software architecture that, during

encoding stores into an internal knowledge base a set of information that are nec-

essary during the phase of decoding of the planners solutions in order to report to

the end user a consistent and easy-to-read solution.

Beside the encoding and decoding difficulties, the main challenge to face when

dealing with the described class of problems concerns their complexity. In chapter

3 we described in detail the features of the class of problems and the extensions

which introduce some not trivial temporal constraints. State-of-art planners are

able to efficiently handle the baseline problems but they to have serious difficul-

ties in solving more complex problems which involve the numerical and temporal

constraints introduced by these extensions. Furthermore when different types

of constraints are combined between them, they lead to a significant increase of

problems complexity. In particular the coupling of the two types of temporal con-

straints described in 3.3 and 3.4 leads to a sharp increase in difficulty of solving

problems, allowing planners to solve only about the 15% of the problems which

involve them.

In this thesis we aimed to study how to successfully model the described class

of problems and how its extensions affect problems complexity. In particular

we studied how to encode problems in both numerical and temporal formalisms

(chapters 5 and 6) by exploiting the main features of the planning language PDDL

and its latest extensions (described in chapter 2). This allowed us to analyze how

different types of constraints impact on the two planning models and to compare

the results that can be obtained in both modeling by using the main general

purpose state-of-art planners.

In order to make these analysis, in chapter 7 we performed a series of experiments

on a dataset of automatically generated problems. This allowed us to evaluate

the complexity of the class of problems w.r.t. both the set of constraints involved

and the planning model adopted. We also evaluated the competence of some
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state-of-art numerical and temporal planners in terms of both coverage and plans

quality.

Experimental analysis has given rise to many considerations.

First of all increasing the number of UAVs and targets involved in problems has

shown to have a much less meaningful impact than introducing temporal con-

straints. For instance, let us consider problems with no temporal constraints

among different targets observations (eventually involving time windows on tar-

gets observation). While switching from problems with two UAVs and six targets

to problems with four UAVs and ten targets leads to a decrease of about 20% in

the number of problems solved, adding instead only two temporal constraints to

the class of problems with two UAVs and six targets leads to a decrease of more

than 30% in the number of problems solved.

Furthermore our experiments have proven that the two planning models differ-

ently react to the extensions of the class of problems with different constraints.

In particular temporal constraints between target observations have a stronger

impact on numerical model, while with a temporal model it is more difficult to

solve problems involving temporal windows for targets observation and automatic

assignment of observations to UAVs. In our analysis we attributed these behav-

iors mainly to the way constraints can be modeled in both formalisms. In fact in

temporal planning it is easy to express in actions schema a series of requirements

on different targets observations by using the PDDL 2.2 syntax which allows to

express conditions at specified time points. In numerical planning instead, as al-

ready mentioned, it is necessary to simulate time passing and agents coordination

in time is not automatically performed by the planner, therefore introducing con-

straints which require a strict cooperation between agents leads to a significant

increase of complexity. Conversely, defining temporal windows of observability of

targets requires more work from a temporal planner, which treats these constraints

as actual temporal information, than a numerical planner which treats them as

numerical constraints ignoring time concept.

These considerations justify our encoding in both planning formalisms. There is

no clear winner between the two models: each model is better for a certain type of

problems and should be employed in the opportune situations. It is worth noting

that the enormous effort required to opportunely build the models and develop

encoding and decoding algorithms is an effort that must be done only once during
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the system development. After that the encoding and decoding processes can

be performed in polynomial time when using the system. Furthermore despite

the profound differences between the two planning models the input provided by

an end user (the mission requirements) and the final output displayed by the

system, in our architecture, have the same form, regardless of the underlying

model. Therefore it is possible to integrate both planning models within the same

architecture and even provide to an end user, in a mixed-initiative perspective,

suggestions on which model to use, according to the types of requirements he

expressed.

In chapter 7 we also analyzed a series of real-world scenarios which allowed us to

make some consideration on real-world problems’ complexity. The scenarios con-

firmed both the actual complexity of real-world problems and the limits of planners

in dealing with that. Temporal constraints between two observations, especially if

they must be performed by different agents, require a strong coordination between

agents which, in order to satisfy them must both cooperate with each other and

opportunely schedule their actions to perform the constrained observations in the

right time intervals. Furthermore defining time windows for targets observations

implies defining complex constraints whose nature is nearest to SMT and MILP

problems than classical planning ones. We therefore showed that real-world sce-

narios of the class of problems we defined imply a series of hard constraints which

are not trivial and strongly impact on problems complexity and planners ability

to solve them.

In our analysis we also have shown that scalability is one of the major problem in

solving these problems and mechanisms of problem’s simplification must be often

performed in order to be able to find satisfying solutions. Planners have proven to

be very sensitive to non obvious factors, such as the unit of measure of numerical

fluents, and consequently they don’t easily allow to make accurate predictions on

problems solvability. However this study have also shown that they are capable

of efficiently solving classes of problems with few (and not particularly strict)

temporal constraints. This type of class of problems is also relevant in real world.

In fact there is a great number of real life problems involving robotic agents that

must perform their tasks in a restricted environment (such as domotic agents or

mini/micro UAVs) which can be addressed by exploiting the solutions described

in this thesis.
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8.2 Extensions and future works

Possible extensions of this work may concern analyzing strategies to reduce the

problems complexity to help planners in finding a solution. In order to do that it

is possible to perform a series of simplifications during problems encoding. In the

thesis we mentioned the abstraction we made on a LOC target by only considering

the two end points of the polygonal chain which describes it and giving to the

related numerical fluents (such as the time required by a UAV to fly over the

target) the opportune values based on the real shape of the LOC. However many

other strategies and simplifications can be developed.

For instance, when adopting a numerical model in UAV domain, it is possible to

employ some heuristics in order to pre-calculate, where possible, the first useful

instant when the UAVs can take off, based on the windows of observability of the

targets. 1 This is helpful because it means that the planner may not schedule a

series of wait on ground actions, otherwise necessary in order to obtain an optimal

plan, and it has to find a shorter plan.

Another simplification that can be done concerns clustering. Clustering mecha-

nism could be activated when multiple targets are close enough (e.g. the distance

between the targets is less than a predefined threshold), and they must be observed

with the same sensor and the set of targets could be replaced by a new fictitious

target located in the centroid of the cluster of targets. This operation permits to

reduce the computational cost of producing an (optimized) plan since it reduces

the number of targets (and consequently the number of alternatives the planner

has to explore).

A further extension due to reduce problems complexity may be perform some

automatic problem decompositions in case of multi-agent problems in which all

the agents are independent. In fact if there is no temporal constraint between

the observation requests assigned to two different UAVs, the two missions can be

considered separately. In this way we can obviously reduce the complexity of the

problems the planner has to solve.

Finally in our experiments on synthetic examples we noticed that, against ex-

pectations, requiring the planners to autonomously choose which UAV to use to

1In particular by taking into account of both the earliest time of targets observability windows
and the time required by the UAVs to take off and to reach the first observable target, it is possible
to calculate the first useful instant when the aircrafts can take off.
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satisfy an observation request, doesn’t have significant consequences on problems’

complexity w.r.t. the other constraints. A future work may concern modeling a

class of problems in which system autonomously decide a subset of UAVs with

whom accomplish the tasks and integrate it within a mixed-initiative system of

support to mission planning.
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