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Abstract—Goal models are an example of requirement mod-
eling language that has been applied to support the runtime
monitoring and diagnosis of software systems and to steer self-
adaptive systems. When creating a goal model, requirement
engineers make assumptions concerning how the goals relate to
each other and when they should be considered as satisfied. In
dynamic environments, however, the assumptions made in the
model may be (or become) invalid. This may result in a system
that does not satisfy the stakeholders’ needs and, when the model
is used in adaptive systems, ineffective reconfigurations. Only few
and preliminary works address the automated validation of goal
or requirement models. In this paper we propose the use of prob-
abilistic models (Bayesian Networks) to determine the validity of
the assumptions underlying a goal model. We employ empirical
data and probabilistic inference to automatically determine a
quantitative degree of validity of goal model assumptions. We
illustrate the approach on a smart traffic scenario.

Index Terms—Goal Models; Requirement Monitoring;
Bayesian Networks.

I. INTRODUCTION

Designing modern software systems is a complex task. For

example, an urban traffic system includes a multitude of entities,

such as pedestrians, drivers, cars, bicycles, traffic lights and

signs, speed cameras, and road regulations. These entities

operate in dynamic settings [1], are weakly controllable, and

their behavior can only be partly predicted at design-time.

Anticipating all the possible states and transitions is not an

option for modern, open (socio-technical) systems [2].

Requirement engineers often make assumptions [3] about re-

quirements and their satisfaction conditions. These assumptions

concern the relationships between the system, the requirements

and the environment in which the system must operate [3]. In a

requirement model, for instance, satisfying certain requirement

is assumed to guarantee the satisfaction of higher level

requirements, the satisfaction of a requirement is assumed to

positively or negatively contribute to the achievement of other

requirements, and the priorities of non-functional requirements

are only estimated [4].

Several frameworks (e.g., [5], [6]) have been proposed to

support runtime requirement monitoring and diagnosis. Many

of such approaches represent requirements via goal modeling

languages such as KAOS [7] or iStar [8]. These tools enable the

collection of system execution data and their analysis in terms

of requirements satisfaction. Furthermore, runtime requirement

monitoring provides the essential inputs for detecting whether

and when design-time assumptions concerning requirement

satisfaction become invalid [3].

Early work by Ali et al. [3], [9] discusses the necessity

of assessing at runtime the assumptions underlying goal

models. Such runtime assessments concern the conditions

for goal satisfaction (e.g., decompositions, contributions) that

the requirement engineers make based on their beliefs and

knowledge about the system under design and its environment.

Based on such baseline, we set the following research question.

Research Question (RQ): How to use Bayesian Networks to
validate the assumptions in a goal model with empirical data?

In this paper we propose a novel approach that extends

and implements the idea of validating design assumptions at

runtime [3]. We use a Bayesian Network to collect statistical

information about requirement satisfaction and to learn the

correlation between goal and softgoal satisfaction in different

operating contexts. This information can be obtained at runtime

by using existing monitoring frameworks (e.g., [5], [6]), or

from existing datasets already available at design-time (e.g., by

examining the business processes logs in an organization). The

Bayesian Network, automatically generated from a goal model,

provides the engineer a tool that can be used to analyze the

behavior of a system and to detect misalignment between the

assumptions being made and empirical data.

The paper is structured as follows. Sec. II introduces an

illustrative example concerning smart traffic. Sec. III explains

the supported types of design-time assumptions. We illustrate

and revisit the assumptions presented by Ali et al. [3]. In

Sec. IV we introduce Requirement Bayesian Networks (RBNs)

and show how to map a goal model to an RBN. Sec. V presents

a technique that uses probabilistic inference on a Requirement

Bayesian Network to determine the degree of validity of the

assumptions underlying a goal model. In Sec. VI we evaluate

the feasibility of our work by applying it to the illustrative

example. Finally, we present a discussion of the related work

in Sec. VII, and some concluding remarks in Sec. VIII.

II. ILLUSTRATIVE EXAMPLE: SMART TRAFFIC

Suppose the city council of a smart city aims at improving

the urban traffic by offering a Central Navigation Service (CNS)

as proposed in the goal model illustrated in Fig. 1 (see [10]

for a similar example from self-adaptive system literature).

A major goal is identified: at least 10% of the cars in the
city shall always use the offered CNS (identified with id NS in

Fig. 1). To satisfy this goal, two sub-goals are assumed to be

necessary: whenever a car starts a trip toward a destination, the
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Fig. 1. Illustrative goal model for the smart transportation simulator presented in Sec. II. The text between brackets represents an element’s id.

car shall receive a route from the Central Navigation Service
(NSD in Fig. 1) and at least 80% of all the route suggestions
given by the CNS is respected by all the cars equipped with
the CNS (RS in Fig. 1). The NSD goal can be met by either

employing a self-adaptive navigation service (ANS in Fig. 1)

(e.g., see [10]) or a static navigation service (SNS in Fig. 1). In

other words, whenever a car equipped with the CNS starts a
trip toward a destination, the car shall receive a route from an
adaptive (static) navigation service. These goals are assumed
to help achieve two softgoals concerning the global traffic load

in the city (evaluated in terms of cars’ average trip overhead)

and the satisfaction of the users when using the navigation

service (evaluated in terms of number of complaints) [10].

In goal models, goals are organized in hierarchies via AND-

and OR-decomposition links. For example, to achieve the

goal NS, both goals NSD and RS shall be satisfied. OR-

decompositions describe possible exclusive ways to achieve

a goal. The expected positive or negative impact of goals on

softgoals is represented via contribution links, shown as dashed

directed arrows. Although contributions can connect different

node types, in this paper we restrict ourselves to links between

goals and softgoals in order to prevent cycles in the model.

We make use of a simplified goal model: we consider only

goals and softgoals, leaving out tasks from our discussion.

The presented techniques, however, can be generalized and

applied at different granularity levels, including tasks. We

integrate, instead, our simplified goal model with Souza et al.’s
[11] awareness requirements (AwReqs). AwReqs qualify the

satisfaction of goals. Goals that are not associated to an AwReq
in Fig. 1 are required to be satisfied by every instance of the

referred goal (e.g., an instance of goal ANS is created every time

a car equipped with the CNS starts a trip, and such instance is

satisfied if the car receives a route from an adaptive navigation

service). These requirements are called regular AwReqs in [11].

Requirements like SuccessRate, instead, are called aggregate
AwReqs: the satisfaction of the associated goal is determined

in terms of groups of instances of the goal (e.g. an instance

of the goal NS is created and evaluated for every car driving

in the city, NS however is achieved if 10% of such instances

TABLE I
SATISFACTION CONDITIONS OF THE GOALS IN THE RUNNING EXAMPLE.

Goal Satisfied

NS
>10% cars in the city is using the CNS
(eval at every time instant)

NSD
every time a car equipped with the CNS starts a trip
it receives a route from the CNS

ANS
every time a car equipped with the CNS starts a trip
it receives a route from an ANS

SNS
every time a car equipped with the CNS starts a trip
it receives a route from a SNS

RS
at least the 80% of all the suggestions from the CNS
has been accepted (eval every week)

ATO
the average trip overhead of all the cars has been
below 250% (eval every week)

C
the number of complaints received
is below 30 (eval every week)

is satisfied). Table I describes precisely the conditions for

requirement monitors to determine goal satisfaction.

The system of the running example can operate in four

possible operating contexts: day or night (in the simulator,

respectively 600 and 300 cars in the city) under normal or

extreme weather conditions. We call contextual properties

the monitorable environmental variables that determine the

operating context of the system: Time and Weather.

III. DESIGN-TIME ASSUMPTIONS

We briefly describe here 6 types of assumptions underlying

the structure of a goal model [3], and we illustrate them with

respect to our example:

1) Goal satisfiability assumption: in a specific operating

context, a goal is satisfied.

Fig. 1 is based on 20 goal satisfiability assumptions: one

for each goal in the model for each operating context (e.g.,

in context day-extreme, the goal RS is satisfied).
2) Softgoal achievement assumption: in a specific operating

context, a softgoal is achieved.

Fig. 1 is based on 8 softgoal achievement assumptions: one

for each softgoal in the model for each operating context

(e.g., in context day-extreme, the softgoal ATO is achieved).
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3) Contribution assumption: in a specific operating context,

there is a positive (negative) synergy between the satisfac-

tion of a goal and the achievement of a softgoal connected

via a contribution link.

Fig. 1 is based on 8 contribution assumptions: one for each

contribution link in the model for each operating context

(e.g., in context day-extreme, there is a positive synergy
between the satisfaction of goal NS and the achievement of
the softgoal ATO).

4) Decomposition assumptions: in a specific operating context,

the satisfaction of an AND-decomposed goal depends on

the satisfaction of all its sub-goals, and an OR-decomposed

goal is satisfied only when one and only one of its sub-goals

is satisfied.

Fig. 1 is based on 4 AND-decomposition assumptions,

derived by associating the only AND-decomposition with

each of the 4 operating contexts. For example, in context
day-extreme, to satisfy the goal NS both the goals NSD
and RS shall be satisfied. Analogously there are 4 OR-

decomposition assumptions.

5) Adoptability assumption: in a specific operating context,

there is a positive synergy between the satisfaction of a goal

and the satisfaction of each one of its sub-goals separately.

Fig. 1 is based on 16 adoptability assumptions: one for

each decomposition link between a sub-goal and a goal, for

each operating context (e.g., in context day-extreme, there
is a positive synergy between the satisfaction of the goal
SNS and the satisfaction of the goal NSD).

Notice that while decomposition assumptions concern one-
to-many relationships (i.e., between one goal and all of

its children), adoptability assumptions concern one-to-one
relationships (i.e., between a goal and each of its sub-goals

separately).

6) Goal necessity assumption: in a specific operating context,

the activation of a specific goal is necessary condition for

achieving all the softgoals.

Fig. 1 is based on 20 goal necessity assumptions: one for

each of the goals in the model for each operating context

(e.g., in context day-extreme, to achieve the two softgoals
ATO and C together, the goal ANS must be activated).
Note that this assumption concerns the activation of a goal,

regardless of its satisfaction; i.e., it is the hypothesis that,

in order to achieve the softgoals, it is better to keep active

a goal rather than disabling it.

The small goal model of the running example, despite its

simplicity, contains 80 assumptions that the requirement

engineer who constructed it has made! This calls for automated

mechanisms that assist requirements engineering in validating

such many assumptions.

IV. FROM GOAL MODELS TO BAYESIAN NETWORKS

In this section we formally define how to automatically

generate the structure of a RBN from a goal model of the

type described in Sec. II. We first provide a formal description

of the goal model and of the RBN and finally we define the

mapping. Notice that in order to generate the structure of

a RBN we consider only the topological information of the

goal model (i.e., goal and softgoal nodes and contribution and

decomposition links). Information concerning the satisfaction

of the goals (i.e., AwReq and quality constraints) must be used,

instead, to generate a monitoring system to produce data that

will train the RBN probability distributions. For this reason,

for the sake of simplicity, in the following section we omit

AwReq and quality constraints from the formalization of the

goal model.

A. Goal Model

A goal model, as described in Sec. II, can be defined as a

tuple GM = 〈(G, ch, d),SG, cl〉, where (G, ch, d) is the AND-

OR tree, with G = {G1, ..., Gn} set of n goals, ch : G → 2G

function determining the children of a goal, d : G → {AND,OR}
partial function determining the type of decomposition of goals

with children, SG = {SG1, ..., SGm} set of m softgoals, and

cl : G → 2SG a function that maps goals to the softgoals that

they contribute to.

In order to distinguish between different types of goals, in the

following we make use of a function type : G → {agg,reg}
associating each goal to a value describing the type of AwReq
associated to it. The values respectively represent aggregate
and regular AwReq as described in Sec. II.

B. Requirement Bayesian Network

In this section we provide details about the type of Bayesian

Network (called Requirement Bayesian Network, or RBN) that

we generate for assumption validation. Notice that in the context

of Bayesian Networks we use the notation reported in Table II.

TABLE II
A SUMMARY OF THE NOTATION USED FOR BNS

Notation Description
X , Y , ... Random variables (italic uppercase)

X, Y, ... Set of random variables (bold uppercase)

v1, v2, ... Value in the domain of a random variable (italic lowercase)

x, y, ... Assignment of values to a set of nodes (bold lowercase)

Xv (X = v), assignment of value v to a random variable X

Xv Assignment of value v to all nodes inX ⊆ X
Xact ¬Xdis = ¬(X = disabled), the fact: X is not disabled

P Probability distribution

P Single probability

Let CP = {CPi, ..., CPk} be a set of monitorable contextual

properties of the system (e.g., Time, Weather), each associated

to a domain of values (e.g., Weather can be either normal or

extreme). A Requirement Bayesian NetworkRBN = (X ,A,P)
is a Bayesian Network where:

• X = G ∪ S ∪ C is a set of nodes, representing random

variables in probability theory. The sets G, S and C are

assumed to be disjoint. The set G consists of goal nodes.
Each node G ∈ G corresponds to one goal and has a

discrete domain of 3 possible values: obeyed, violated
and disabled. The set S consists of softgoal nodes. Each
node S ∈ S corresponds to a boolean softgoal and has
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a discrete domain of 2 values: true and false. Finally,

the set C consists of context nodes. Each node C ∈ C
corresponds to a contextual property CPi ∈ CP and can

have discrete or continuous domain.

• A ⊆ (G × G) ∪ (C × G) ∪ (C × S) ∪ (G × S) is

the set of arrows connecting pairs of nodes. If there is an

arrow from node X to node Y , X is said to be a parent

of Y .

• P is a set of conditional probability distributions, each

one associated to a node in X and quantifying the effect

of the parents on the node.

In the rest of this paper, the pair (X ,A) is called the structure

of the Requirement Bayesian Network (X ,A,P).
An evidence e is a revealed (observed) assignment of values

for some or all of the random variables in the Bayesian Network,

i.e., e = {Xv|X ∈ X} with X ⊆ X and v a possible value in

the domain of the variables. An evidence c for all the context

nodes C is called a context1. In general, given the set X of

all the nodes in a Bayesian Network B and an evidence e,
reasoning with B means to determine the distribution P(X|e),
with X ⊆ X a set of nodes of which we want to discover the

probability distribution (e.g., P(NSD|Wextreme) is the probability

distribution of the values of the random variable NSD, given

that extreme weather is observed).

C. From Goal Models to Requirement Bayesian Networks

We formally define how to obtain the structure of a RBN
from a goal model GM. This is done by defining a function

GM2BNS that maps a goal model GM and a set of contextual

properties CP to an RBN structure (X ,A). In order to define

this function, we denote the set of contributing descendant

nodes of a softgoal S in GM as cont_desc(S), where a node

G is assumed to contribute to a softgoal S if G is a descendant

of S and, moreover, G is either a leaf goal or has the type

aggregate but does not have any ancestor with type aggregate.
Formally, we have cont_desc(S) = (desc(S) \ {G′|G′ ∈
desc(G), G ∈ desc(S), type(G) = agg}) \ {G|ch(G) �=
∅, type(G) �= agg}, where decs(G) is the set the descendant

of G (similar for S).

Given a goal model GM = 〈(G, ch, d),SG, cl〉 and a set

of contextual properties CP , we have GM2BNS(GM, CP) =
(X ,A), where

• X = G ∪ SG ∪ CP
• A = {(G,S) | G ∈ cont_desc(S)} ∪

{(G1, G2) | G1 ∈ ch(G2)} ∪
{(C,G) | C ∈ CP, G ∈ G, (type(G) = agg

∨ ch(G) = ∅ )} ∪
{(C, S) | C ∈ CP, S ∈ SG}

Intuitively A contains 1) an arrow from a goal node G to a

softgoal S if G is a contributing descendant of S (see function

cont_desc above), 2) an arrow from a sub-goal G1 to its parent

1When we refer to nodes of a specific type we use the corresponding
notation convention, e.g., N refers to a node in N, c refers to a configuration
of values of nodes in C, Nviol refers to an assignment of value violated to a
set of norm nodes N, etc.

Fig. 2. The structure of the RBN obtained from the mapping GM2BNS
presented in Sec. IV-C. The name of each node corresponds to their id.

goal G2, 3) an arrow from a context node C to each goal node

G that represent either a leaf goal (ch(G) = ∅) or a goal with

an aggregate AwReq, and 4) an arrow from each context node

C to each softgoal S.

Fig. 2 reports the structure of the RBN automatically

generated by the procedure described in this section for the

running example.

Notice that besides reflecting the goal model’s topology, the

network also introduces the context variables. The structure of

the network, which consist of three types of nodes (goal, soft-

goals and context nodes), allows to analyze the assumptions in

different operating contexts. In an RBN , every context node

is parent of all the soft-goals nodes. This allows to represent

the intuition that the achievement of soft-goals is not only due

to the satisfaction (or presence) of goals, but also to events

that occurr in the environment. Context nodes are also parents

of all the goal nodes whose satisfaction is not exclusively

determined by their decomposition (e.g., a goal that is AND-

decomposed into two sub-goals is satisfied when both sub-goals

are satisfied) but can also be affected by the context in which

they are applied.

The choice of a discrete domain of three values for the goal

nodes makes the network more versatile: while the obeyed
and violated values allow to evaluate assumptions concerning

the satisfaction or violation of goals (e.g., goal satisfiability
assumption), the disabled value allows the network to support

OR-decomposed goals. In order to update the conditional

probability distribution of a node, it is necessary to provide an

evidence for both the node and all its parents. In case of an

OR-decomposed goal, it is available an evidence only for one

of the parents (sub-goals) at a time. The disabled value allows

therefore to perform the update also in such case.

Notice finally that GM2BNS only produces the structure of

the Bayesian Network, without providing any initialization of

its parameters. The conditional probability distributions of the

nodes must be instead learned from data.
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TABLE III
PART OF THE DATASET USED TO TRAIN THE BN OF FIG. 2 AND OBTAINED

FROM MONITORING THE EXECUTION OF THE SYSTEM IN SEC. II.

W T NS NSD ANS SNS RS ATO C D O
norm night viol ob dis ob viol T T T T
norm day ob ob ob dis ob F F T F
norm day ob ob viol dis viol F F T F
extr night viol ob dis ob ob T T T T
extr day ob dis dis dis dis T F T T
extr day ob ob dis ob viol T F T T
...

D. Populating the RBN: Data collection

Table III reports a dataset example that can be obtained

from monitoring the satisfaction of goals and softgoals during

executions of the system implementing the running example.

Notice that the values that each of the variable assumes belongs

to its domain as specified in Sec.IV-B (e.g., obeyed, violated,
disabled for goal nodes, true or false for softgoal nodes). Such

type of dataset can be used to train the RBN and learn the

set of conditional probability distributions P . We omit here a

discussion about the learning technique (e.g. classical Bayesian

learning) to use (which is out of the scope of the paper) and

we remind the reader to the existing literature (e.g., [12], [13]).

Furthermore in this paper we do not focus on the mechanisms

to monitor the system and retrieve data (e.g., by using EEAT

monitoring framework [6] to monitor the goals as expressed in

Table I). In the following we assume we dispose of a trained

RBN, and we define a mechanism to analyze its content and

to automatically identify erroneous assumptions.

V. VALIDATING ASSUMPTIONS

We propose a mechanism that uses an RBN trained with

runtime system execution data in order (i) to determine to what

extent the assumptions underlying the system’s goal model are

valid, and (ii) to show the validity on the goal model.

We introduce the notion of degree of validity (δ in the

following) for an assumption as a real number in the range

[−1, 1]. δ = 1 denotes a fully valid assumption, value

δ = −1 indicates a fully incorrect assumption, and the

intermediate values describe an assumption with partial validity.

Below, we define how to calculate the degree of validity for

each of the assumption types listed in Sec. III. The validity

degree is computed as a difference between two probabilities,

representing the collected positive and negative evidence for the

validity of that assumption, respectively. Thus, if the collected

positive evidence is close to 1 and the negative evidence close

to 0, the degree of validity assumes values close to +1. Values

around 0 show that the assumption is only partly valid since

the positive and negative evidences for the validity have similar

likelihood.

A. Degree of Validity of Assumptions

Given a context c, we define the validity degree of the six

assumption types presented in this paper as follows:

1) Goal satisfiability assumption. Given a goal node G, the

degree of validity of the associated goal satisfiability

assumption in context c is

δS(G, c) = P (Gob | c)− P (Gviol | c)

2) Softgoal achievement assumption. Given a softgoal node S,

the degree of validity of the associated softgoal achievement

assumption in context c is

δG(S, c) = P (Strue | c)− P (Sfalse | c)

3) Contribution assumption Given a goal node G and a softgoal

node S, the degree of validity of a positive contribution

assumption is:

δC(S,G, c) = P (Strue | Gob ∧ c)− P (Strue | Gviol ∧ c)

Note that the degree of validity of negative contribution

assumptions, due to the boolean nature of the softgoal nodes,

can be calculated as −δC .

4) Decomposition assumption Given a goal node G and the set

G’ ∈ G of its goal nodes parents, let g be the disjunction

of all possible assignments of values to variables in G’
excluding the assignment G’ob, let g1ob be the disjunction

of all possible assignments of values to variables in G’
such that only one variable takes value obeyed, and let go
be the disjunction of all possible assignments of values to

variables in G’ excluding the assignments in g1ob.

δAND(G, c) = P (Gob | G’ob ∧ c)− P (Gob | g ∧ c)

δXOR(G, c) = P (Gob | g1ob ∧ c)− P (Gob | go ∧ c)

For example, the degree of validity of the AND-

decomposition assumption of the goal NS is as follows:

δAND(NS, c) = P (NSob | NSDob ∧RSob ∧ c) −
P (NSob | ¬(NSDob ∧RSob) ∧ c)

5) Adoptability assumption. Given two goal nodes G and G′

such that G′ is parent of G in RBN , the degree of validity

of the associated adoptability assumption in context c is

δAD(G,G′, c) = P (Gob | G′
ob ∧ c)− P (Gob | G′

viol ∧ c)

6) Goal necessity assumption. Given a goal node G and a set

of softgoal nodes S, the degree of validity of the associated

goal necessity assumption in context c is

δAC(G, c) = P (Strue | Gact ∧ c)− P (Strue | Gdis ∧ c)

VI. FEASIBILITY

We report on a preliminary evaluation of the feasibility of

our approach for validating goal model assumptions. A full

evaluation that encompasses qualities like usability, scalability

and generality, is left to future work.

We executed a traffic simulation of the running example by

using a modified version of the CrowdNav simulator [10]. We

extended CrowdNav in two ways: (i) besides the embedded

adaptive navigation service, we have implemented a static
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Fig. 3. A coloured visualization of the RM of Fig. 1 in two different operating contexts (DN and NE in the Figure).

navigation service; (ii) we have instrumented the simulator in

such a way to monitor the satisfaction of the goals specified

in Table I. We ran the simulator in all the operating contexts

and we collected from the simulation logs a dataset composed

of about 4.6 millions rows, a portion of which is reported in

Table III. As a tool for handling the Bayesian Network we

used the bnlearn R package [14]. We generated a RBN for our

scenario using the mapping function GM2BNS; this led to the

network shown in Fig. 2. Then, we trained such network using

the dataset obtained from the traffic simulation. We evaluated

then each of the 20 assumptions in the goal model of Fig. 1 in

each of the the 4 different operating contexts. Table IV reports

the degree of validity of the assumptions for two different

operating contexts: day-normal (dn) and night-extreme (ne).
Fig. 3 reports a coloured version of the goal model of

the running example, which shows the results of the model

validation in the two considered operating contexts. Colours

represent the degree of validity of the assumptions shown

in Table IV: green represents valid assumptions (degree of

validity close to 1), red denotes incorrect assumptions (degree

of validity close to -1), and intermediate degrees of validity

lead to colours in the gradient between green and red.2

The filling colour of goals and softgoals in Fig. 3 represents

the degree of validity of the goal satisfiability and softgoal
achievement assumptions, respectively. For example, the data

that we analyzed show that the softgoal ATO is hardly achieved

in context day-normal (left figure), i.e., the degree of validity

of the softgoal achievement assumption δG(ATO, dn) is below

0. This can be explained by the high number of cars driving

in the city during the day. Note that this information can

be useful to trigger a requirements evolution, since it shows

that the currently defined requirements cannot guarantee the

achievement of the softgoal.

The small squares on the top left of goals provide information

2The RGB colour for a degree of validity x is determined as follows:
(�(1−x)∗255�, 255, 0), if x >= 0, (255, �(1+x)∗255�, 0) otherwise. �x�
denotes the nearest integer to x.

TABLE IV
TWO TABLES REPORTING THE DEGREE OF VALIDITY OF THE ASSUMPTIONS

MADE IN FIG.1 IN TWO DIFFERENT OPERATING CONTEXT (DN AND NE).

Assumption Validity Assumption Validity
δS(NS, dn) 0.0580 δS(NS, ne) 0.0675
δS(NSD, dn) 0.1006 δS(NSD, ne) 0.0946
δS(ANS, dn) 1.71E-05 δS(ANS, ne) -6.43E-05
δS(SNS, dn) 0.1002 δS(SNS, ne) 0.0940
δS(RS, dn) 0.0596 δS(RS, ne) 0.0581
δG(ATO, dn) -0.2730 δG(ATO, ne) 0.9999
δG(C, dn) 0.5079 δG(C, ne) 0.9998
δC(ATO,NS, dn) -0.0743 δC(ATO,NS, ne) 9.12E-06
δC(C,NSD, dn) -0.0136 δC(C,NSD, ne) 0.4776
δAD(NS,NSD, dn) -0.1007 δAD(NS,NSD, ne) -0.0018
δAD(NS,RS, dn) 0.0025 δAD(NS,RS, ne) 0.0025
δAD(NSD,ANS, dn) 0.3541 δAD(NSD,ANS, ne) -0.0252
δAD(NSD,SNS, dn) 1 δAD(NSD,SNS, ne) 0.6684
δAND(NS, dn) 0.0187 δAND(NS, ne) -0.0376
δXOR(NSD, dn) 0.1002 δXOR(NSD, ne) 0.0939
δAC(NS, dn) -0.0067 δAC(NS, ne) -4.84E-05
δAC(NSD, dn) -0.0040 δAC(NSD, ne) 0.0028
δAC(ANS, dn) -0.1002 δAC(ANS, ne) -0.7336
δAC(SNS, dn) -0.0032 δAC(SNS, ne) 0.0024
δAC(RS, dn) -0.0018 δAC(RS, ne) -0.0014

about goal necessity assumptions. For example, the data

show that the goal ANS is harmful in context night-extreme
(right figure), i.e., the degree of validity of the goal necessity

assumption δAC(ANS, ne) is close to -1, which means that in

context night-extreme the probability of achieving the softgoals

is very low when the adaptive navigation service is employed,

while is very high when it is not employed. This can be

explained by the fact that the adaptive navigation service uses

some of the cars as “explorers” to find less congested roads (see

[10] for more details). However, such type algorithm results

being harmful during the night since less cars drive in the city

and roads are not that busy.

Finally, the decomposition links in the model are coloured

based on the degree of validity of adoptability assumptions, the
type of decomposition based on the validity of decomposition
assumptions and contribution links based on the validity of
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contribution assumptions.

VII. RELATED WORK

Requirement monitoring is an essential task in order to

evaluate the behavior of a system and to diagnose its problems.

The availability of a requirements model during execution [15],

[16] is crucial to support the evolution of the requirements.

The majority of the existing approaches concerning monitoring

and diagnosis (e.g., [5], [6]) focus on detecting misalignment

between the system behavior and the expected behavior

described by the requirements. Research on self-adaptive

software leverages this knowledge to trigger an adaptation

of the system that automatically restores the compliance with

the requirements or that selects a more appropriate requirements

variant (e.g., [17], [18]).
Works related to requirement assumptions validation are

mainly proposed by Ali et al. [3], [9]. They show the advantages

of monitoring requirements at runtime to detect when design-

time assumptions about requirement satisfaction become invalid.

In the same spirit Paucar et al. [4] proposed techniques to

reassess the assumptions about the priority of softgoals.
The importance of valid assumptions underlying a system

is also illustrated by Knobbout et al. [19]: under certain

assumptions about the compliance of software components

with the requirements, it is possible to prove whether some

overall system properties can be achieved.
Bayesian Networks have been widely used in many fields

(ranging from medicine to forensics) as knowledge represen-

tation structures for learning and reasoning about the inter-

dependencies between their variables [12]. In RE they have

been employed both for the runtime verification of requirements

[20] and for decision making (e.g., DDNs can be used to revise

the priorities of non-functional requirements [17]). We also

present an application of Bayesian Networks to RE, but we

focus on a wide range of design-time assumptions that are

made by the builder of a goal model.
Wu et al. [21] propose a preliminary study of the relationship

between an iStar [8] model and Bayesian Networks and a set of

heuristics for mapping them. In our work we provide a formal

and fully automatic mapping between a goal model and a

Bayesian Network, we propose a different and more expressive

type of Bayesian Network, integrating contextual information

and the possibility of disabling nodes (supporting therefore

also the use of the BN at runtime). Furthermore we use the

BN to validate a goal model based on data, without relying

on expert knowledge to determine the network parameters.
Finally, Reddivari et al. [22] show the importance of require-

ment visualization to improve the analytical capabilities of

practitioners. In this work, we make a step toward this direction

by visualizing the validity of the design-time assumptions

on a requirements model, thereby helping practitioners take

decisions on the evolution of a system.

VIII. DISCUSSION AND FUTURE WORK

We presented a novel approach to validate, by making use of

empirical data, several assumptions underlying the structure of

a requirement (here, goal) model. We illustrated how Bayesian

Networks can be successfully employed to automatically

determine the validity of design-time assumptions concerning

a goal model. In particular we showed that the employment

of a Requirement Bayesian Network allows to quantitatively

determine the degree of validity of the assumptions by means

of classical probabilistic inference.

By defining a formal mapping between a goal model and

a Requirement Bayesian Network and by leveraging classical

Bayesian learning and inference techniques, we provided an

automated mechanism to validate design-time assumptions by

exploiting empirical data (RQ).

We have shown how a simple labeling function can be used

to visualize the degree of validity of the assumptions onto the

original goal model, in order to support requirements engineers

in understanding the impact of the data on the system goals.

Our technique can be used both at runtime (by monitoring

the execution of the running system) to trigger or suggest

an evolution of the requirements, and at design-time (by

using already existing empirical data, if available) to help

the designers build a requirements model that is more likely

to stay valid when the system is put in operation.

Threats to Validity. A full evaluation of the proposal, in

particular in terms of generality, scalability and usefulness, is

left for future work. The lack of such evaluation affects both

conclusion and external validity by threatening the applicability

of the approach and its generality. The notion of degree of

validity is based on the assumption that the collected positive

and negative evidence have the same statistical significance.

The choice of such method to evaluate the assumptions affects

construct validity. In future work we plan to explore additional

techniques that overcome this limitation. The topology of

the Requirement Bayesian Network, reflecting the structure

of a goal model, may influence the conclusions drawn via

probabilistic inference. The choice of such topology is a threat

to internal validity. Different mappings between a goal model

may be tried to overcome this limitation.

Future work. A thorough evaluation of the scalability, useful-

ness and generality of our proposal is imperative. Moreover, we

plan to develop algorithms that can guide software evolution

by providing additional information on the most critical and

significant assumptions. To do so, we plan to employ other

analysis techniques for Bayesian Networks, such as sensitivity

analysis [23] or qualitative reasoning [24]. Also, we are

currently working on algorithms that, based on the information

learned at runtime, automatically revise the requirements

applied in different operating contexts. Finally, we plan to

embed our techniques in a software tool—in the spirit of

visual requirement analytics—that can be used by practitioners

for monitoring their systems and for guiding their evolution.
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