### Runtime Norm Revision using Bayesian Networks

#### Davide Dell'Anna, Mehdi Dastani and Fabiano Dalpiaz

Deptartment of Information and Computing Sciences Utrecht University

PRIMA 2018

October 31, 2018



### Normative Multiagent Systems

**Norms**: means to control and influence the behaviour of autonomous agents to guarantee the overall objective of multiagent systems.

**Problem**: autonomous agents operate in dynamic and uncertain environments s.t. the enforced norms may become ineffective.

Misalignment between norms and overall system objectives at runtime.



- minimise the average travel time.
- minimise the number of accidents.
- Enforced Norms:
  - N<sub>1</sub>: cars should follow static/adaptive navigation system.
  - $N_2$ : junctions should use static/adaptive traffic lights or line panels.
- Execution **Context**: extreme/normal weather and day/night time.
  - $\Rightarrow$  Norm  $N_2$  may not be appropriate for extreme weather.

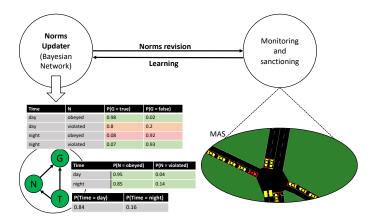
How to design and develop a runtime supervision framework that

- 1. learns at runtime the effectiveness of the enforced norms
- 2. automatically revises them, when necessary

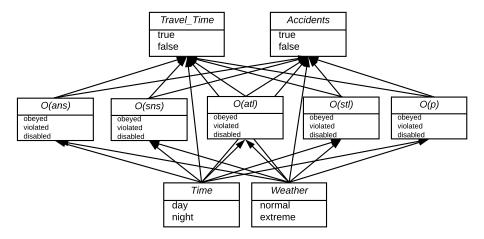
to ensure the overall objectives of a MAS?

### Supervising a Normative MAS

An high-level view of the solution



### Bayesian Network with Norms



### Revision Trigger for Norms in mpc

- Norm revision is triggered when
  - changes in the probability distributions in the Bayesian network are not significant anymore, and
  - 2. the objectives of the system is still not achieved, e.g.,

 $P(Travel\_Time_{true} \land Accidents_{true}) \ge 0.95$ 

• Norms in the most problematic context **mpc** are subject to revision.

$$mpc = argmax_{c \in all(c)} P(\mathbf{O}_{false} \mid c)$$

### Revision Procedure: Harmful norms should be disabled

For the enforced norm set  ${\bf N}$  and the system objectives  ${\bf O},$  identify norms in  ${\bf N}$  that are harmful for the achievement of  ${\bf O}.$ 

$$argmax_{\mathbf{n}\in\mathbf{n}_{\{dis,\neg dis\}}}^{\mathsf{N}}P(\mathbf{O}_{true} \mid \mathbf{n} \land \mathbf{mpc})$$

#### All norms in assignment n with value dis should be disabled.

Note that some of these norms may already have been disabled in which case they remain disabled.

 $\mathbf{N}'_{a}$  is now the subset of  $\mathbf{N}$  that are not harmful and should be active.

### Revision Procedure: Norm violations good for Objectives

For the active norm set  $N'_a$  and the system objectives O, identify norms in  $N'_a$  that can contribute to the achievement of O when violated.

$$argmax_{\mathbf{n}\in\mathbf{n}_{\{ob,viol\}}^{\mathbf{N}'_{a}}}P(\mathbf{0}_{true} \mid \mathbf{n} \wedge \mathbf{mpc} \wedge \mathbf{n}_{dis}^{\mathbf{N}'_{d}})$$

All norms in assignment n with value viol should be relaxed.

## Revision Procedure: Most Likely Explanation for non-achievement of Objectives

For the active norm set  $\mathbf{N}'_a$  and the system objectives  $\mathbf{O}$ , identify the most likely explanation for the non-achievement of  $\mathbf{O}$ .

$$argmax_{\mathbf{n} \in \mathbf{n}_{\{ob, viol\}}^{\mathbf{N}'_{a}}} P(\mathbf{n} \ | \mathbf{O}_{\textit{false}} \land \mathbf{mpc} \land \mathbf{n}_{\textit{dis}}^{\mathbf{N}'_{d}})$$

### All norms in assignment n with value *viol* should be strengthen or altered.

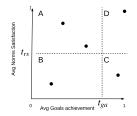
## All norms in assignment n with value *Ob* should not be revised or strengthened.

### Algorithm 1: Using Bayesian Network

- 1. Identify and disable harmful norms
- 2. Identify and relax norms that are useful when violated
- 3. Identify and strengthen/alter norms whose violations are harmful
- 4. Keep all other norms unrevised or strengthen them

# Algorithm 2: Using Avg. Satisfaction of Objectives & Norms

- 1. Calculate avg norms satisfaction
- 2. Calculate avg objectives achievement



- 3. Section A: Relax norms that are obeyed but better violated, if any. Otherwise, Strengthen/Alter them.
- 4. Section B: Strengthen/Alter norms that are violated but better obeyed, and Relax norms that are better when violated.
- 5. Section C: Relax violated norms that are better violated, if any. Otherwise, Strengthen/Alter violated norms that are better obeyed.

### Evaluation: The Space of Possible Configurations

We start various algorithms (including our two) in 84 configurations (possible norm sets in each context; 12 norms and 4 contexts) with different average probability of objectives achievement.

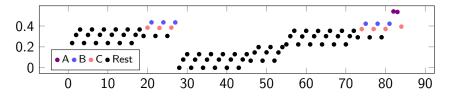


Figure: Avg. probability of objectives achievement for the 84 tried configurations.

### Evaluation: Running 5 Algorithms with 3 Thresholds

|      | <b>T1</b> ( $t_{ga} = 0.5$ , 2 optimal conf.) |             |      | <b>T2</b> ( $t_{ga} = 0.4$ , 8 optimal conf.) |                    |      | <b>T3</b> ( $t_{ga} = 0.37$ , 15 optimal conf.) |             |      |
|------|-----------------------------------------------|-------------|------|-----------------------------------------------|--------------------|------|-------------------------------------------------|-------------|------|
| Algo | Steps ( $\sigma$ )                            | Final (σ)   | Opt. | Steps ( $\sigma$ )                            | Final ( $\sigma$ ) | Opt. | Steps ( $\sigma$ )                              | Final (σ)   | Opt. |
| MD4  | 68.94 (21.47)                                 | 0.54 (0.00) | 100% | 24.48 (12.56)                                 | 0.45 (0.04)        | 100% | 17.54 (9.56)                                    | 0.43 (0.05) | 100% |
| ML10 | 88.54 (15.15)                                 | 0.54 (0.00) | 100% | 18.80 (10.62)                                 | 0.43 (0.02)        | 100% | 11.15 (6.15)                                    | 0.40 (0.03) | 100% |
| ML20 | 73.81 (17.93)                                 | 0.54 (0.00) | 100% | 23.80 (11.44)                                 | 0.44 (0.03)        | 100% | 17.94 (9.08)                                    | 0.42 (0.04) | 100% |
| НСРВ | 64.86 (27.48)                                 | 0.54 (0.00) | 100% | 11.90 (8.04)                                  | 0.43 (0.02)        | 100% | 2.99 (3.03)                                     | 0.40 (0.03) | 100% |
| HCSB | 79.70 (22.05)                                 | 0.54 (0.00) | 100% | 5.10 (3.50)                                   | 0.43 (0.02)        | 100% | 0.82 (0.39)                                     | 0.40 (0.03) | 100% |

Table: Comparison of the algorithms with thresholds T1, T2 and T3. Values of Steps and Final columns are average values over the 84 different simulations.

### Evaluation: Comparison of Algorithms

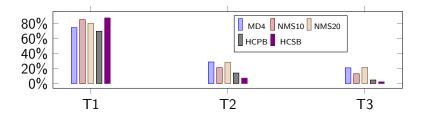


Figure: Average percentage of explored configurations before finding an optimal one. 100% means trying, on average, all the 84 configurations.

### Current and Future work

- Runtime norm-based mechanism design
- Integration of sanctions revision
- Evaluation on case studies involving rational agents
- Bayesian Networks vs other probabilistic approaches
- "On-demand" norm synthesis (?!)