Runtime Revision of Norms and Sanctions based on Agent Preferences

Davide Dell'Anna, Mehdi Dastani, Fabiano Dalpiaz

Universiteit Utrecht

Department of Information and Computing Sciences, Utrecht University, The Netherlands D.DellAnna@uu.nl, M.M.Dastani@uu.nl, F.Dalpiaz@uu.nl

Context

In a normative MAS, the enforced norms may be inadequate to fulfill the system objectives.

Example: Ring Road **Objective**: avoid traffic jams. Norm: cars' speed ≤ 50 km/h. **Context**: road density 30 cars/km.

Norm-based Supervision of MAS

MAS supervision mechanism

- Continuously monitors the execution of a MAS
- Evaluates the norm enforcement in terms of the overall objectives
- Intervenes by revising the norms

Norm obeyed + interactions and local decisions of cars, following their **preferences** \rightarrow objective is not achieved.

Research Question

How to effectively **revise the sanction** of a norm so to ensure the fulfillment of the system objectives?

Norm Bayesian Network

- Two objectives nodes **O**
- One norm node N
- Two context nodes **C**

Norms and Agents Preferences

Norm: N = (p, s), with $p \in L$ set of propositional atoms, and $s \in \mathbb{N}$. Agent's Preference: $Pref(a) = (C, \succeq)$, with $C = \{(p_i, b_i) \mid 1 \leq i \leq i \leq i \leq i \}$ $k \& b_i \in \mathbb{N} \}$ and \succeq partial order on C. Preferences characterize **agent's type**.

Example: $N = (speed_{50}, 1)$. Two types of agents: T1 and T2 $T1: (speed_100, 0) \succeq (speed_50, 0) \succeq (speed_100, 1) \succeq (speed_50, 1)$ $T2: (speed_100, 0) \succeq (speed_100, 1) \succeq (speed_50, 0) \succeq (speed_50, 1)$ T1 has no reason to violate N, T2 has reason to violate N.

Sanction Revision Strategies

SYNERGY

- **Positive synergy** between N and O iff $P(\mathbf{O}_{true}|N_{ob}) \geq P(\mathbf{O}_{true}|N_{viol})$.
- If positive synergy \rightarrow reduce violations of N
- Otherwise \rightarrow increase violations of N
- **New sanction**: the closest s expected to increase (reduce) $P(N_{viol}|\mathbf{c})$.

Example

 $N = (speed_50, 1)$. Positive synergy between N and O in c. SYNERGY: reduce $P(N_{viol}) \rightarrow$ new sanction: 2 SENSITIVITY: reduce $P(N_{viol})$ of $\Delta \theta_{N_{viol}\mathbf{c}} = -0.5 \rightarrow$ new sanction: 3

SENSITIVITY

Required revision strength $\Delta \theta_{N_{viole}}$ in context **c**: required change in $P(N_{viol}|\mathbf{c})$ so that $P(\mathbf{O}_{true}|\mathbf{c}) \geq \tau$

 $P(\mathbf{O}_{true}|\mathbf{c}) + \frac{\delta P(\mathbf{O}_{true}|\mathbf{c})}{\delta \theta_{N_{viol}|\mathbf{c}}} \cdot \Delta \theta_{N_{viol}|\mathbf{c}} \geq \tau$

New sanction: the closest s s.t. $UB(N'_{viol}|\mathbf{c}) - P(N_{viol}|\mathbf{c}) \approx \Delta \theta_{N_{viol}\mathbf{c}}$.

Revision Strategies as Hill Climbing Neighborhood Heuristics: Steps to Converge

Six scenarios of the Ring Road with **SUMO Traffic Simulator**: 2 norms and 3 distributions of agents. **Goal**: to determine an **optimal sanction** $s \in \{0, 1, 2, 3\}$ for each of 4 execution contexts. $\rightarrow 256$ possibile configurations for each scenario. Average number of steps required to find an optimal configuration $(P(\mathbf{O}_{true}) \geq \tau)$:

Current and Future Work

• Runtime norm-based mechanism design • Multiple norms • Revision strategies for norm's proposition • More complex norms representation