
Requirements Classification with Interpretable
Machine Learning and Dependency Parsing

Fabiano Dalpiaz

Utrecht University

Utrecht, The Netherlands

f.dalpiaz@uu.nl

Davide Dell’Anna

Utrecht University

Utrecht, The Netherlands

d.dellanna@uu.nl

Fatma Başak Aydemir

Boğaziçi University

İstanbul, Turkey

basak.aydemir@boun.edu.tr

Sercan Çevikol

Boğaziçi University

İstanbul, Turkey

sercan.cevikol@boun.edu.tr

Abstract—Requirements classification is a traditional applica-
tion of machine learning (ML) to RE that helps handle large
requirements datasets. A prime example of an RE classification
problem is the distinction between functional and non-functional
(quality) requirements. State-of-the-art classifiers build their
effectiveness on a large set of word features like text n-grams
or POS n-grams, which do not fully capture the essence of a
requirement. As a result, it is arduous for human analysts to in-
terpret the classification results by exploring the classifier’s inner
workings. We propose the use of more general linguistic features,
such as dependency types, for the construction of interpretable
ML classifiers for RE. Through a feature engineering effort, in
which we are assisted by modern introspection tools that reveal
the hidden inner workings of ML classifiers, we derive a set
of 17 linguistic features. While classifiers that use our proposed
features fit the training set slightly worse than those that use
high-dimensional feature sets, our approach performs generally
better on validation datasets and it is more interpretable.

Index Terms—requirements engineering, interpretable ma-
chine learning, requirements classification, explainable AI

I. INTRODUCTION

Classification is a key example of a machine learning (ML)

task applied to requirements engineering (RE). Over the past

decades, classifiers have been devised and utilized for many

purposes, including the detection and categorization of non-

functional requirements (NFRs) [1]–[4], the analysis of app

reviews to distinguish between bugs, features, and praises [5]

or to identify useful reviews [6], and the separation of require-

ments from information in large specification documents [7].

The many existing requirements classification approaches

differ in the features that guide the classifier, the employed

algorithm (Support Vector Machines, decision trees, Naïve

Bayes, etc.), the performance metrics, and the training and

validation datasets [3]. In spite of this diversity, the most

effective classifiers [2] rely on a high-dimensional word feature

set: a large number of features are used to guide the classifier

(100 to 500 in [2]), and these features are at the word level,

e.g., text n-grams or Part-of-Speech (POS) n-grams.

The many features hinder the interpretability of those

classifiers, making it hard for analysts to understand why the

classifier performs well or poorly, for the algorithm’s decision

rules may combine hundreds of features. Furthermore, the low-
level features characterize requirements at the word level, rather

than focusing on the meaning of sentences. We propose the use

of interpretable ML [8], [9] to obtain a deeper understanding

of the implicit classification rules of automated classifiers.

We choose to focus on the distinction between functional and

non-functional requirements, a widely studied topic [3] whose

theoretical underpinnings—the distinction between functional

requirements, NFRs, quality goals, quality constraints, and

functional constraints—are still being discussed [10]–[12]. We

envision that interpretable classifiers can be used to shed

additional light on this scientific discussion.

In this paper, we lay the foundations for constructing

interpretable classifiers that can be used for classification

problems in RE. We make the following contributions:

• We manually annotate 1,500+ requirements that consist

of the widely used PROMISE dataset [13] as well as

requirements from seven other industrial projects. Our

annotations use Li et al.’s taxonomy [11], which allows a

requirement to possess both functional and quality aspects.

• To define our baseline, we reconstruct a word-level, high-

dimensional classification approach [2], make it publicly

available, and apply it to our annotated dataset. The results

confirm its good performance on the training set, and show

limited generality when applied to other datasets.

• We propose a new type of classification approach for RE

problems that relies on a lower number of more general,

thus interpretable, linguistic features such as dependency

types [14]. We select our features by using interpretable

ML techniques [9] that provide if-then-else rules and

helped us introspect how the features guide a classifier.

• We compare our new feature set against our baseline.

Quantitatively, the performance is generally comparable;

qualitatively, instead, classifiers that use our feature set

can be more easily interpreted.

For RE practitioners, we empirically show that it is possible

to build more general classifiers that rely on high-level linguistic

features without compromising accuracy. These classifiers

exhibit a more graceful performance degradation when applied

to new datasets, and their inner working are easier to inspect.

Organization. Sec. II sets our theoretical framework for

tagging functional and quality aspects. Sec. III defines our

baseline, by assessing the performance of a high-dimensional

feature set on seven industrial datasets. Sec. IV describes the

creation of our proposed feature set. Sec. V analyzes our

feature set and discusses the impacts on RE. Sec. VI reviews

the main threats to validity, Sec. VII reviews related work,

while Sec. VIII presents conclusions and future directions.

142

2019 IEEE 27th International Requirements Engineering Conference (RE)

2332-6441/19/$31.00 ©2019 IEEE
DOI 10.1109/RE.2019.00025

II. THE F/NFR CLASSIFICATION PROBLEM, REVISITED

Building on the recent literature on functional and quality

requirements, we detail our version of the classification problem

(Sec. II-A), which we apply to eight datasets (Sec. II-B). Finally,

we report on the tagging process of the datasets (Sec. II-C).

A. Building the classification problem

Li et al. [11] adopt a quality-oriented approach to model

NFRs as quality goals. A quality is a basic perceivable or

measurable characteristic that inheres in and existentially

depends on its subject [15], and it has a quality type (e.g.,

usability) and a quality value (e.g., acceptable). Quality goals

map a quality type to a quality value. A quality constraint is

similar, but maps to measurable values.

We take the approach of Li et al. as our baseline and propose

a simplification that combines their concepts into two aspects:

• Functional aspect (F): a requirement includes either a

functional goal or a functional constraint;

• Quality aspect (Q): a requirement includes a quality goal

or a quality constraint.

The decision on the functional aspect is independent from the

decision on the quality aspect; thus, a requirement can possess

only F aspects, only Q aspects, both aspects (F+Q), or none.

In the last case, the requirement denotes information [7].

B. Datasets

We obtained eight datasets and manually classified them

using the approach described in Sec. II-A. PROMISE [13]

collects 625 requirements from 15 projects, created and

classified by students, and has previously been used to train

and test other requirements classification approaches (e.g.,

[2], [11]). The ESA Euclid dataset was provided to us

by the European Space Agency and concerns the Euclid

mission [16]; we have selected 236 requirements from the

system requirements document, retaining those in the sections:

reliability and safety, safe mode, altitude and orbit control,

propulsion, telemetry, tracking and command. We also use two

other private datasets from the IT domain, which include 172

and 138 requirements, respectively. The first dataset contains the

user requirements for implementing an off-the-shelf Helpdesk
system, and the second dataset has requirements for a bespoke

user account request and management application (User mgmt).
The Dronology dataset [17] has 97 system requirements for

Unmanned Aerial Systems (UASs). The ReqView dataset [18]

details the requirements specification for the ReqView require-

ments management tool. for ReqView, we have converted the

format of the requirements by combining the modal verbs

column (‘shall’, ‘could’) with the requirement text (‘print a

report’, ‘be usable’) into full sentences (‘the system shall print

a report’). The requirements for Leeds University’s Library

online management system (Leeds library) are documented

in an online spreadsheet [19]. We have removed the lines of

text that were not related to requirements. The final dataset

consists of requirements for the Web Architectures for Services

Platforms (WASP) application [20].

C. Tagging

Each dataset was tagged by two authors independently. Then,

the taggers organized reconciliation meetings to go over the

disputes in tagging. If the taggers failed to convince each other,

a third author was consulted for the final tag. The authors went

over all disputes and managed to resolve them.

Table I
KRIPPENDORFF’S α AND AGREEMENT PERCENTAGE FOR THE EIGHT

DATASETS

Dataset F Q Dataset F Q
Kα % Kα % Kα % Kα %

PROMISE -0.38 0.45 0.67 0.84 Dronology -0.12 0.77 0.41 0.76
ESA Euclid 0.68 0.84 0.43 0.87 ReqView 0.64 0.91 0.74 0.89
Helpdesk 0.67 0.90 0.85 0.94 Leeds library 0.65 0.82 0.54 0.80
User mgmt 0.71 0.95 0.70 0.92 WASP 0.52 0.90 0.37 0.71

Table I shows the initial level of agreement between the

taggers using the Krippendorff’s α (KALPHA) metric [21],

which measures the observed disagreement normalized to the

expected disagreement. Only one of the 16 scores is above the

customary threshold of 0.8 and six in total are greater than

the minimum acceptable limit of 0.667. One explanation on

the low agreement score for the PROMISE dataset is that our

taggers used it as the training dataset. The imbalanced nature

of the datasets should not be ignored when interpreting the

level of agreement as it disturbs the reliability of the KALPHA

metric. One extreme case is the negative result obtained for the

Dronology dataset, which has 94 F tags in 98 requirements.

While the scores presented in Table I prove the difficulty of

the requirements classification problem, the taggers were able

to resolve all conflicts in the next round, which indicates the

significance of clear standards for the classification task.

Table II summarizes the output of the tagging process

after the reconciliation sessions. The datasets are ordered by

the number of requirement rows. As described above, the

taggers assigned F and Q tags. Using these two tags, we then

automatically calculated whether the row is tagged with only

F (OnlyF), only Q (OnlyQ), both F and Q (F+Q), or neither

of them (¬R). The reconciled classification is then used for

training and testing the classifiers. The tagged datasets are

available in our repository [22].

Table II
OVERVIEW OF THE TAGGED DATASETS: OUR GOLD STANDARD

Dataset Public Rows F Q OnlyF OnlyQ F+Q ¬R

PROMISE Yes 625 310 382 230 302 80 13
ESA Euclid No 236 91 211 23 143 68 2
Helpdesk No 172 143 51 121 29 22 0
User mgmt No 138 126 25 113 12 13 0
Dronology Yes 97 94 28 68 2 26 1
ReqView Yes 87 75 32 54 11 21 1
Leeds library Yes 85 44 61 23 40 21 1
WASP Yes 62 55 19 42 6 13 1

Totals 1,502 938 809 674 545 264 19

143

III. APPLYING A HIGH-DIMENSIONAL, WORD-LEVEL

FEATURE SET TO OUR CLASSIFICATION PROBLEM

As a first step of our research on interpretable classifiers for

RE, we need to select a high-dimensional, word-level feature

set to take as a reference in terms of classification performance

and interpretability. Among the existing options [3], we choose

a recent approach [2] that shows excellent performance and is

described extensively in the original paper.

A. Method

Our study involves i. reconstructing the feature set, ii. using

this set in an automated classifier that adopts the same technique

as [2], iii. training the classifier on a dataset (PROMISE

NFR [13], often used in other studies), and iv. assessing the

performance on a heterogeneous set of requirements datasets.

We evaluate the approach in different settings:

Fitness on PROMISE (train). How well does the high-

dimensional classifier1 fit the training dataset that is used to

construct the classification model?

75%-25% splitting of PROMISE (test). A popular way to

perform an inexpensive validation by randomly splitting the

dataset into two: 75% of the entries are used to train the

classifier, the remaining 25% for testing it.

k-fold cross-validation of PROMISE (kfold). The dataset is

split into k evenly sized parts (folds), and the classifier is tested

k times by training it on the k-1 folds and testing it on the

remaining kth fold. We employ stratified k-fold, which ensures

a similar class ratio (positive/negative) in each of the folds.

Project-level cross-validation (pfold). Since PROMISE con-

sists of 15 projects, we use 12 of them as training set, and 3

as a test set. To increase generality, we produce 10 variants

of such partitioning such that every partition has at least 100

requirements and has a balanced F and Q ratio. Moreover, we

ensured that two projects co-occur in at most one test set.

Industrial datasets (industry). The PROMISE-trained classi-

fier is evaluated on the seven industrial datasets of Sec. II. We

train the classifier on PROMISE to study its adaptability to

requirements from different projects.

B. Metrics and tools

While Kurtanović and Maalej [2] had a single binary

classification problem (F vs. NFR) and used metrics for each

of the two classes F and NFR, our framework of Sec. II leads

to four binary classification problems to be studied:

F: does a requirement possess functional aspects?

Q: does requirement possess quality aspects?

OnlyF: does a requirement possess only functional aspects?

OnlyQ: does a requirement possess only quality aspects?

For each of these settings, we employ a combination of metrics

that are widely used in ML to assess the performance of binary

classifiers. Besides the metrics of precision, recall, and F1

1For brevity, we use the term ‘high-dimensional classifier’ to indicate a
‘classifier trained on a high-dimensional feature set’.

score2, which are commonly used in the RE literature, we

use the receiver operating characteristic (ROC) plot and its

associated metric, the area under the ROC curve (AUC).

ROC plots [24] are 2-dimensional charts that show the trade-

off between recall (y-axis) and specificity (the true negatives

rate, x-axis). The so-called ‘ROC heaven’ is the top-left corner,

in which recall is 1.0 and there are no false positives, i.e.,

precision is also 1.0. In ROC plots, classifiers are represented

as a line that is plotted by calculating recall and false positive

rate at different levels of the discrimination threshold. The

discrimination threshold is the value in the [0, 1] range that

a classifier uses to determine when a data item should be

classified as a positive. While this threshold is set to 0.5 by

default for a binary classification problem, it can be adjusted

to alter the sensitivity to false positives.

Better classifiers are characterized by a curve that stays

closer to the top-left corner. The ROC plot provides a single

performance metric for a classifier, the AUC [25], that measures

the degree of separability between the two classes. A perfect

classifier has an AUC of 1.0, an always-wrong classifier has

an AUC of 0.0, and a classifier with random performance has

an AUC of 0.5. Fig. 1 illustrates these notions.

Tr
ue

 p
os

iti
ve

 r
at

e

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Random classif
ier

Better

Worse

Perfect classifier

AUC for a random
classifier (0.5)

Figure 1. Illustration of the ROC plot and of the AUC

The ROC curve has some limitations with unbalanced

datasets [26]. Thus, we complement it with an analysis of

precision for unbalanced datasets (e.g., in Table II, Dronology

has only 2 requirements tagged as OnlyQ). We resort to

oversampling to plot smoother ROC curves when the ratio

between the two classes exceeds 10:1 and the minority class

has 6+ requirements. These values are recommended guidelines

for ADASYN [27], a state-of-the-art oversampler that generates

synthetic samples by taking the k closest neighbors as input.

C. Reconstructing Kurtanović and Maalej’s approach

We could not access the original classifier by Kurtanović

and Maalej [2], for it is not available online and the authors

could not give us access to a working copy. Fortunately, the

original publication [2] is relatively clear on the feature set,

and we complemented this knowledge with the classifier that

2We do not study the choice of an appropriate β for the Fβ metric [23],
for its tuning would require us to study the impact of precision and recall on
the daily practices of the development teams who make use of the datasets.

144

Table III
PERFORMANCE OF OUR REPRODUCTION OF [2] FOR THE FOUR CLASSIFIER TARGETS: F, Q, ONLYF, ONLYQ

(a) Top 500 features

Test set F Q OnlyF OnlyQ
Prec Rec F1 AUC Prec Rec F1 AUC Prec Rec F1 AUC Prec Rec F1 AUC

PROMISE train 0.981 0.984 0.982 1.00 0.985 1.000 0.990 1.00 1.000 0.987 0.995 1.00 0.990 0.964 0.978 1.00
PROMISE test 0.819 0.797 0.822 0.89 0.909 0.891 0.873 0.92 0.870 0.870 0.911 0.94 0.896 0.852 0.873 0.91
PROMISE k-fold 0.755 0.684 0.712 0.80 0.785 0.867 0.822 0.84 0.766 0.630 0.681 0.86 0.741 0.798 0.766 0.82
PROMISE p-fold 0.749 0.602 0.663 0.78 0.714 0.877 0.781 0.80 0.752 0.475 0.573 0.81 0.683 0.794 0.728 0.81

Industry 0.773 0.716 0.693 0.69 0.483 0.624 0.550 0.58 0.607 0.414 0.575 0.60 0.415 0.497 0.706 0.69
Industry (std-dev) ±.18 ±.15 ±.09 ±.06 ±.23 ±.08 ±.12 ±.07 ±.23 ±.12 ±.09 ±.05 ±.28 ±.20 ±.08 ±.09
ESA Euclid 0.477 0.451 0.597 0.59 0.898 0.706 0.665 0.54 0.068 0.174 0.686 0.48 0.708 0.524 0.581 0.64
Helpdesk 0.903 0.972 0.890 0.78 0.542 0.510 0.727 0.67 0.785 0.843 0.727 0.69 0.368 0.241 0.802 0.72
User mgmt 0.583 0.643 0.594 0.65 0.151 0.560 0.348 0.47 0.872 0.301 0.391 0.63 0.622 0.578 0.610 0.61
Dronology 1.000 0.670 0.680 0.77 0.370 0.607 0.588 0.66 0.783 0.529 0.567 0.66 0.050 0.500 0.794 0.74
ReqView 0.898 0.707 0.678 0.66 0.409 0.562 0.540 0.58 0.639 0.426 0.494 0.60 0.333 0.636 0.793 0.70
Leeds library 0.654 0.773 0.671 0.72 0.700 0.689 0.565 0.52 0.250 0.217 0.612 0.51 0.645 0.500 0.635 0.73
WASP 0.898 0.800 0.742 0.66 0.311 0.737 0.419 0.61 0.850 0.405 0.548 0.64 0.176 0.500 0.726 0.66

(b) Top 100 features

Test set F Q OnlyF OnlyQ
Prec Rec F1 AUC Prec Rec F1 AUC Prec Rec F1 AUC Prec Rec F1 AUC

PROMISE train 0.877 0.897 0.886 0.95 0.919 0.955 0.922 0.97 0.927 0.887 0.933 0.98 0.884 0.884 0.888 0.95
PROMISE test 0.795 0.784 0.803 0.90 0.910 0.901 0.879 0.95 0.863 0.815 0.892 0.96 0.859 0.753 0.809 0.90
PROMISE k-fold 0.819 0.742 0.774 0.87 0.817 0.909 0.858 0.89 0.818 0.674 0.732 0.90 0.785 0.808 0.795 0.82
PROMISE p-fold 0.805 0.699 0.742 0.85 0.752 0.917 0.823 0.85 0.816 0.515 0.616 0.86 0.745 0.802 0.770 0.81

Industry 0.851 0.714 0.740 0.80 0.533 0.568 0.591 0.61 0.618 0.610 0.651 0.63 0.527 0.472 0.777 0.78
Industry (std-dev) ±.16 ±.13 ±.08 ±.11 ±.23 ±.09 ±.12 ±.09 ±.32 ±.25 ±.11 ±.10 ±.30 ±.26 ±.10 ±.08

the same authors developed to classify app reviews [28], whose

code is partially available online [29].

We applied a few minor modifications to the original version:

• Parse trees were built using Berkley’s benepar library, a

state-of-the-art constituency parser that outperforms [30]

the Stanford parser used in [2].

• We could not reproduce the feature “CP features”, which

was described as “unigrams of part of speech (POS)

tags on the clause and phrase level (CP)”. This text was

insufficient for us to make a correct re-implementation.

• We did not use the dataset taken from Amazon software

reviews that the authors had used to artifically balance

the minority class of NFRs.

• Our four classification problems entailed that we had to

train the classifier four times, for the most informative

features depend on the target class: F, Q, OnlyF, OnlyQ.

The reconstructed code is fully available in our online

repository [22] as two Jupyter Notebooks.

D. Results

We analyze the results from our experiments: precision,

recall, and F1 score are reported in Table III for two high-

dimensional feature sets that include the most informative

features automatically selected through scikit-learn libraries:

the top-500 and the top-100. As a classifier, we use scikit-

learn’s Support Vector Machines (SVM) implementation that

we executed with the linear kernel. This is the same classifier

that was used in [2]. Due to space limitations, we show only

summary data for top-100. The ROC plot for top-500 is shown

in Fig. 2. The remaining data are available online.

A first set of observations can be drawn from the analysis

of precision, recall, and F1 score:

Q vs. F performance (top-500). For the top-500 features

setting (Table III.a), the results for Q outperform those for F

and OnlyF on the PROMISE-derived validation datasets (test,

k-fold, and p-fold), especially in terms of recall. Conversely,

in the industrial datasets, the results for Q are way worse.

F: the easiest target? In both top-100 and top-500, the

classifiers perform best on the F class, especially in industry

datasets. This probably occurs because F is the majority class:

938/1502 requirements possess a functional aspect.

Quality aspects beyond training data. The performance

of the classifiers in identifying quality aspects (Q, OnlyQ)

degrades considerably with the industry datasets. One key

example is Q, losing ∼0.2–0.3 in recall and precision both

with top-500 and top-100, compared to PROMISE. Also, the

recall for OnlyQ worsens ∼0.3 with both top-100 and top-500.

The difficult targets: Only-*. The performance for OnlyF and

OnlyQ on industrial datasets shows high variance; the standard

deviation for their precision is in the [0.23, 0.32] range. An

indication that the feature set did not lead to a general classifier.

Additional observations on the robustness of the classifiers

can be made through the ROC/AUC analysis of Fig. 2:

The difficult ESA Euclid case. The ROC plots show a poor

curve for ESA Euclid, with an AUC score between 0.48 and

0.64, not much better than a classifier with a random outcome

(0.5). The results need some interpretation. For ESA Euclid,

the class Q is dominant over OnlyF (211 vs. 23), and we cannot

therefore draw strong conclusions. Nonetheless, the results for

145

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.89)
Mean k-fold (AUC = 0.80 ± 0.08)
Mean p-fold (AUC = 0.78 ± 0.04)
ESA Euclid (AUC = 0.59)
Helpdesk (AUC = 0.78)
User mgmt (AUC = 0.63)
ReqView (AUC = 0.66)
Leeds library (AUC = 0.72)
± 1 std. dev. from k-fold

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.92)
Mean k-fold (AUC = 0.84 ± 0.09)
Mean p-fold (AUC = 0.80 ± 0.04)
ESA Euclid (AUC = 0.54)
Helpdesk (AUC = 0.67)
User mgmt (AUC = 0.47)
Dronology (AUC = 0.66)
ReqView (AUC = 0.58)
Leeds library (AUC = 0.52)
WASP (AUC = 0.61)
± 1 std. dev. from k-fold

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.94)
Mean k-fold (AUC = 0.86 ± 0.07)
Mean p-fold (AUC = 0.81 ± 0.04)
ESA Euclid (AUC = 0.48)
Helpdesk (AUC = 0.69)
User mgmt (AUC = 0.63)
Dronology (AUC = 0.66)
ReqView (AUC = 0.60)
Leeds library (AUC = 0.51)
WASP (AUC = 0.64)
± 1 std. dev. from k-fold

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Promise test set (AUC = 0.91)
Mean k-fold (AUC = 0.82 ± 0.10)
Mean p-fold (AUC = 0.81 ± 0.07)
ESA Euclid (AUC = 0.64)
5elpdesk (AUC = 0.H2)
User mgmt (AUC = 0.62)
Re3qieV (AUC = 0.H0)
weeds liLrarb (AUC = 0.Hy)
± 1 std. dev. from k-fold

Figure 2. ROC plots for the top 500 features: F (top-left), Q (top-right), OnlyF (bottom-left), OnlyQ (bottom-right)

the more balanced F and OnlyQ classes are also disappointing.

Low generality for Q and OnlyF. The ROC plots that

represent Q (top-right) and OnlyF (bottom-left) highlight a clear

degradation when applying the classifier, trained on PROMISE,

to the industrial datasets. See how the curves for the industrial

datasets fall outside the standard deviation of k-fold.

IV. TOWARDS MORE INFORMATIVE FEATURES FOR

AUTOMATED CLASSIFICATION OF REQUIREMENTS

To cope with the mixed results on the industrial datasets, we

propose the use of higher-level linguistic features in the feature

set. After introducing dependency parsing and describing initial

experiments (Sec. IV-A), we use interpretable ML tools to

select a feature subset that performs well and has low size

(Sec. IV-B), and a further attempt to improve the performance

with quality aspects (Sec. IV-C).

A. Dependency Parsing and Linguistic Features

Dependency parsing [14] is the task of identifying the gram-

matical structure of a sentence by determining the linguistic

dependencies between the words, according to a pre-defined

set of dependency types. For instance, in the requirement ‘The

system shall refresh the display every 60 seconds’, ‘display’

is the direct object (dobj) of the main (root) verb ‘refresh’,

‘shall’ is the auxiliary verb (aux) that affects ‘refresh’, ‘60’ is

the numeric modifier (nummod) of ‘seconds’, etc.

We hypothesize that the presence of linguistic features like

dependency types can help determine whether a requirement

contains functional or quality aspects. We describe the feature

engineering process we carried out to identify features based

on dependency types, and we present three selected feature

sets that we tested on PROMISE and on the industrial datasets

through an SVM classifier configured as in Sec. III-C. We use

the dependency parsing implementation of the spaCy toolkit.

We consider two categories of features from dependency

parsing: i. dependency types themselves (e.g., nummod and

dobj); and ii. branch types of the dependency tree of a

requirement. For example, in the sentence ‘refresh the display’,

a branch of type ROOT → dobj → det connects the root verb

‘refresh’ to the determinant ‘the’ via the direct object ‘display’.

We analyzed the eight datasets to determine the linguistic

features that appeared more often and in which type of

requirements (F, Q, F+Q, OnlyF or OnlyQ). For each type of

requirement, we computed the coverage of each feature, i.e.,

the ratio between the number of requirements that possess that

feature over the number of requirements. For example, 90%

of all requirements contain the dobj dependency type.

We also analyzed the percentage of requirements containing

combinations of two or three features together. For instance,

the combination of dobj and det appears in 60% of OnlyF

requirements but only in 30% OnlyQ requirements.

In total, we analyzed six groups of linguistic features: (1)
single dependency types; combinations of (2) two and (3) three

146

dependency types; (4) types of branches; combinations of (5)
two and (6) three types of branches together.

To determine which features could help a classifier dis-

tinguish between functional and quality aspects, for each

of the six groups of linguistic features, we calculated the

coverage difference between OnlyQ and OnlyF as follows:

Δ = |cov(OnlyQ) − cov(OnlyF)|. The linguistic features

with the highest Δ values are those features that are typically

present in OnlyQ but not in OnlyF and vice versa.

We inspected the 10 most significant features (highest Δ)

for each of the six groups and we obtained a set of 60 different

linguistic features, shared in our public repository [22]. We

tested their performance with various feature subsets, and this

led to three feature sets that performed better on average:

FS1. The top 10 single dependency features of group (1) plus

the single dependency features that were not in the top 10 of

(1) but appeared at least once in the top 10 features of groups

(2) and (3). This set includes 17 features.

FS2. We take the top 10 features of each of the six groups, and

we retain only those features with Δ > 0.2, obtaining a total of

12 features. We then add other features that have been used in

the literature [2], [31]: i. length of the requirement in characters;

the number of ii. modals, iii. adjectives, iv. nouns, v. adverbs,

vi. cardinals, vii. comparative and superlative adjectives, viii.
comparative and superlative adverbs, ix. words; x. number of

constituency parse subtrees in the requirement, xi. the height of

the consistency parse tree, xii. the max height of the dependency

tree of a sentence of a given requirement. Finally, we added

three dependency type-based features that we identified through

a qualitative exploration of the dataset as promising indicators

of quality aspects:

xiii. Nr. of adverbial modifiers that link a verb to an adverb:

x
advmod−−−−−→ y. x : VERB , y : ADV

xiv. Nr. of adjectival modifiers that link a noun to an adjective,

and the noun is not the subject of the sentence:

x
amod−−−→ y. x : NOUN , y : ADJ , �z. z

nsubj−−−→ x

xv. Nr. of adjectival phrases that complement a verb, and the

adjectival phrase head differs from the word ‘able’:

x
acomp−−−−→ y. x : VERB , y : ADJ , y �= ′able ′

In total, FS2 includes 12 + 12 + 3 = 27 features.

FS3. The top 10 features of each of the six groups, plus the

features i-xv. In total, FS3 has 60 + 12 + 3 = 75 features.

Table IV reports the results obtained using feature sets

FS1, FS2, and FS3, and includes the outputs for PROMISE

test and the macro-average of the results for the industry

datasets. A comparison between Table III and Table IV reveals

a similar performance, despite the considerably smaller size

of our feature sets. The feature reduction is made possible by

the higher abstraction level of dependency types compared to

lexical features. A single dependency type subsumes multiple

lower-level text n-grams or POS n-grams. For example, a

fragment like ‘print a report’ leads to the dependency parsing

tree dobj → det , but the same fragment would be captured as

twelve word-level features in [2]: six text n-grams: ‘print’, ‘a’,

‘report’, (‘print’, ‘a’), (‘a’, ‘report’), (‘print’, ‘a’, ‘report’); and

six POS n-grams: VERB, DET, NOUN, (VERB, DET), (DET,

NOUN), and (VERB, DET, NOUN). Also, a variant like ‘save

the page’ would introduce six additional text n-gram features.

B. Feature selection via interpretable ML

The black-box nature of ML classifiers like SVM or neural

networks makes it difficult for humans to comprehend the

logic behind the predictions. With the growing adoption of ML

techniques, there is an increasing trend towards making ML

systems more transparent and interpretable [32].

We employ two recent tools that facilitate the interpreta-

tion of ML classifiers. RuleMatrix [9] extracts logic rules

that approximate a black-box classifier using its feature set.

RuleMatrix also shows the rules on an interactive matrix-

based visualization that depicts which rules apply to the data,

their support, fidelity to the original classifier, and accuracy.

Such visualization aids human analysts understand, explore,

and validate predictive models. SkopeRules [33] is another

interpretable model that generates a list of rules, but does not

visualize them. Under the hood, SkopeRules applies a bagging

estimator training where multiple decision tree classifiers

are trained, and the best rules are selected based on their

performance trying to avoid duplicate rules.

We leverage the interpretability capabilities of SkopeRules

and RuleMatrix to analyze the predictions made by employing

the three feature sets FS1, FS2, FS3. Three authors of the

paper ran the tools, analyzed the generated logic rules, and

identified those features that appeared commonly and that

helped distinguish functional and quality aspects.

Below, we show a set of rules produced by SkopeRules using

FS1 to classify functional aspects in the PROMISE dataset. If

a requirement satisfies any of the rules, it is classified as F.

1. ¬advmod ∧ dobj ∧ nsubj ∧ ¬nsubjpass ∧ ¬nummod
2. ¬acl ∧ dobj ∧ ¬nmod ∧ nsubj ∧ ¬nummod
3. acl ∧ dobj ∧ nsubj ∧ ¬nummod ∧ pobj

The first rule states that a requirement has functional aspects

when: an adverbial modifier (advmod), a passive nominal

subject (nsubjpass), and a numeric modifier (nummod) are not

present, but a direct object dependency (dobj) and an active

nominal subject (nsubj) exist. A requirement that satisfies this

rule is “The WASP platform must have a web-based form to

specify simple POI and service profiles”: the dependencies are

shown in Fig. 5 later in this paper. With these three rules that

refer to just eight features, SkopeRules reaches a precision of

0.69 and a recall of 0.73 on the PROMISE test set.

The following rules are generated by RuleMatrix with FS1

for the F task on PROMISE. Each ‘if’ statement denotes one

rule. Rules are therefore applied in cascade: a rule can fire

only if none of the previous ones fired. RuleMatrix associates

with each rule a pair [p,q]: the probability q for the target

class, and probability p for non-target class.

147

Table IV
PRECISION, RECALL, F1-SCORE, AND AUC ON PROMISE AND INDUSTRY MACRO-AVG WITH THE THREE FEATURE SETS FS1, FS2, FS3

Target Test set FS1 (17 features) FS2 (27 features) FS3 (75 features)

Prec Rec F1 AUC Prec Rec F1 AUC Prec Rec F1 AUC

F PROMISE test 0.67 0.74 0.71 0.73 0.67 0.81 0.72 0.76 0.68 0.78 0.73 0.77
Industry 0.81 ±.16 0.87 ±.08 0.79 ±.09 0.72 ±.09 0.78 ±.17 0.93 ±.08 0.80 ±.13 0.74 ±.09 0.80 ±.18 0.90 ±.10 0.80 ±.12 0.74 ±.11

Q PROMISE test 0.87 0.73 0.76 0.78 0.85 0.78 0.77 0.81 0.88 0.81 0.81 0.85
Industry 0.63 ±.20 0.29 ±.11 0.64 ±.12 0.60 ±.06 0.58 ±.24 0.28 ±.15 0.62 ±.13 0.60 ±.08 0.61 ±.24 0.40 ±.12 0.65 ±.07 0.61 ±.06

OnlyF PROMISE test 0.59 0.78 0.74 0.79 0.65 0.78 0.78 0.83 0.69 0.78 0.80 0.86
Industry 0.83 ±.16 0.87 ±.08 0.79 ±.09 0.68 ±.12 0.83 ±.18 0.82 ±.12 0.77 ±.10 0.77 ±.07 0.82 ±.20 0.77 ±.14 0.73 ±.09 0.68 ±.10

OnlyQ PROMISE test 0.73 0.68 0.71 0.74 0.78 0.62 0.71 0.76 0.76 0.65 0.71 0.77
Industry 0.68 ±.20 0.29 ±.12 0.63 ±.10 0.58 ±.06 0.76 ±.20 0.17 ±.10 0.59 ±.16 0.57 ±.11 0.73 ±.23 0.23 ±.11 0.62 ±.10 0.60 ±.06

IF nummod THEN prob: [0.9761, 0.0239]
ELSE IF ¬dobj THEN prob: [0.9503, 0.0497]
ELSE DEFAULT prob: [0.0011, 0.9989]

Figure 3. Interactive rule visualization interface of RuleMatrix

The effectiveness of the rules can be introspected through

RuleMatrix’s interactive visualization: see Fig. 3. Each row

represent one rule. The waterflow diagram on the left represents

all the data, and the horizontal flow to the rule captures how

many data are classified by that rule. Each column corresponds

to a feature (here, nummod and dobj). The intersection of a rule

and a feature is marked with a gray rectangle if the rule refers

to that feature. Hovering on the area reveals the rule that relates

to that feature. The Output column shows the probability

that the data belongs to the target class (orange) or non-target

class (blue), according to the rule. The Fidelity column

indicates the degree to which the rule aligns with the outcome

from the original classifier. Finally, the column Evidence
describes how much data are correctly and wrongly predicted.

The three rules identified by RuleMatrix, for example, are

similar to, but simpler than those produced by SkopeRules.

RuleMatrix’s rule set uses only two features: dobj and nummod,

and the rules reach a performance that is very similar to FS1’s

classifier on PROMISE test for the F problem: a precision of

69% and a recall of 73% with just two features. Note that this

is only 8% and 4% less than the results of the high-dimensional,

word-level classifier with the top-500 features.

Through a qualitative analysis of the logical rules generated

by SkopeRules and RuleMatrix, we selected 15 significant fea-

tures. We then used this feature set to classify the requirements.

Table V reports the results, and shows, again, comparable

results to those obtained with the feature sets FS1, FS2, FS3

and shown in Table IV, with some oscillations such as −0.06
for the precision of Q, +0.07 for the recall of Q, and −0.09
for the recall of OnlyF in industry.

In comparison to the high-dimensional classifiers of Table

III, the performance with F and OnlyF is better, on average,

on industrial datasets. In particular, there is a recall gain of

+0.2 in F, and a precision gain of +0.2 and a recall gain of

+0.4 in OnlyF. On the PROMISE dataset, our performance is

generally lower in the range of −0.05 to −0.15. The major

degradation concerns Q and OnlyQ, in which we consistently

score lower in terms of recall (between −0.1 and −0.3) both

on PROMISE and on the industry datasets. On the other hand,

major degradations in recall (−0.3 with the industry datasets

for OnlyQ) are compensated by precision gains (+0.25).

Table V
PREC, REC, F1 AND AUC WITH THE 15 LINGUISTIC FEATURES IDENTIFIED

WITH SKOPERULES AND RULEMATRIX

Target Test set Prec Rec F1 AUC

F PROMISE test 0.67 0.74 0.71 0.76
Industry 0.80 ±.16 0.87 ±.08 0.79 ±.09 0.70 ±.14

Q PROMISE test 0.87 0.76 0.77 0.80
Industry 0.57 ±.18 0.36 ±.14 0.65 ±.09 0.62 ±.06

OnlyF PROMISE test 0.63 0.80 0.77 0.83
Industry 0.82 ±.19 0.78 ±.15 0.75 ±.10 0.69 ±.13

OnlyQ PROMISE test 0.74 0.69 0.71 0.75
Industry 0.68 ±.19 0.29 ±.12 0.62 ±.10 0.59 ±.04

C. Improving the identification of quality aspects

The loss of performance with Q and OnlyQ prompted us to

conduct an additional attempt. Inspired by earlier work [1] that

used keywords as features for NFRs, we combined this idea

with the dependency type root, the main verb of a sentence.

We searched for root verbs in the datasets that occur

significantly more frequently (as a heuristic, 3 times more

often) in requirements tagged with quality aspects rather than

in requirements tagged with functional aspects, and vice versa.

We identified a list of verbs with functional prevalence, each

occurring 3 times more often in OnlyF than in OnlyQ and 3

times more often in F than in Q; and an analogous list of verbs

148

with quality prevalence. We set a minimum threshold of 10

occurrences in our dataset to exclude infrequent verbs.

Based on these verbs, listed in Table VII, we created the

boolean features fverb and qverb, which are true when a

requirement’s root is a verb in the corresponding list. We then

added these two features to the 15 features from the previous

section, and we obtained the results shown in Table VI.

Table VI
PREC, REC, F1 AND AUC WITH 17 FEATURES, INCLUDING ROOT VERBS

Target Test set Prec Rec F1 AUC

F PROMISE test 0.71 0.76 0.73 0.78
Industry 0.82 ±.16 0.87 ±.09 0.80 ±.09 0.80 ±.09

Q PROMISE test 0.77 0.80 0.92 0.80
Industry 0.55 ±.22 0.70 ±.11 0.65 ±.09 0.68 ±.07

OnlyF PROMISE test 0.77 0.83 0.72 0.82
Industry 0.89 ±.16 0.50 ±.17 0.61 ±.11 0.80 ±.08

OnlyQ PROMISE test 0.71 0.75 0.78 0.64
Industry 0.73 ±.16 0.32 ±.09 0.64 ±.11 0.66 ±.07

While the results for F are comparable to those of Table V,

the additional features provide a slight improvement for OnlyQ

and significantly better results for Q: the recall on the industrial

datasets increased from 0.36 to 0.70. Conversely, the features

lead to a lower recall for OnlyF: −0.28. Further exploration

is necessary to determine which are the appropriate linguistic

features that denote quality aspects.

Finally, comparing our results to the top-500 version of the

high-dimensional classifier of Sec. III-C, we observe that:

• On PROMISE, precision and recall worsen, but the

degradation is limited (circa −0.1);

• On the industry datasets, our approach shows substantial

improvements in recall for F (+0.16) and in precision for

OnlyQ (+0.31) and OnlyF (+0.28).

• For the OnlyQ target, our approach worsens in recall

(−0.18), but shows a large gain in precision (+0.31).

• The ROC plot of Fig. 4 shows that, for the F case, a

classifier with our features trained on PROMISE does not

degrade on the industrial datasets. The plots for the other

targets show some degradation, like those in Fig. 2.

Figure 4. ROC plot for F with the final 17 features

V. FEATURE SET ANALYSIS AND IMPACT ON RE

We first analyze our final feature set and illustrate it on

some requirements (Sec. V-A), then compare it with the (POS)

n-grams approach (Sec. V-B). Finally, we discuss the impact

of our work on RE research and practice in Sec. V-C.

A. Dissecting our Feature Set

Table VII lists the final feature set using definitions adapted

from the Universal Dependencies project [34], a world-wide

attempt to reconcile the existing dependency parsing tag sets.

Table VII
THE FINAL FEATURE SET, INCLUDING 17 FEATURES

Name Tag Description

Boolean features: dependency types

Adjectival clause acl Clause that acts as an adjective and
modifies a nominal.

Adverbial modifier advmod Adverb or adverbial phrase that modifies
a predicate or a modifier word.

Adjectival modifier amod Adjectival phrase modifying a (pro)noun.
Passive auxiliary auxpass Non-main verb of the clause that contains

passive information.
Direct object dobj The noun phrase that denotes the entity

acted upon.
Nominal subject nsubj The nominal phrase which is the syntac-

tic subject of a clause.
Nominal modifier nmod Noun acting as a non-core argument.
Numeric modifier nummod Number phrase that modifies the meaning

of a noun with a quantity.
Passive nominal subject nsubjpass Noun phrase which is the syntactic sub-

ject of a passive clause.
Object of preposition pobj Link between a preposition and its object.
Prepositional modifier prep A prepositional phrase that modifies the

meaning of a verb, adjective, noun or
another prepositional modifier.

Numeric features

Adjectival complement acomp Number of adjectival phrases that func-
tion as complements of a verb (only root
verbs included).

Cardinal CD Number of cardinal numbers (POS tag).
Modal MD Number of modal verbs (POS tag).
Adverb RB Number of adverbs (POS tag).

Boolean features: root verb types

Functional verb fverb Is the root verb one of {allow, display,
send, track, include, notify, shall, add,
assign, generate, request, create, define,
record, indicate, save}?

Quality verb qverb Is the root verb one of {be, use, ensure,
interface, handle, take, comply, run}?

We explain the dependency types via four requirements from

our datasets. Fig. 5 illustrates a subset of the linguistic depen-

dencies in those sentences, showing only those dependency

types that are in Table VII. For example, in Leeds library,

‘system’ is the nominal subject (nsubj) whereas ‘metadata’

is the direct object (dobj) of the main verb ‘support’, while

the adverbial clause (advmod) rooted by ‘related’ modifies

‘metadata’. User mgmt has a passive nominal subject (nsubj-
pass) of a passive verb: ‘fields’ is the subject of ‘set’. Advmod
and amod dependencies are created by adverbs and adjectives,

that modify verbs and nouns, such as ‘automatically set’ in

149

Leeds library
The system must support technical metadata related to specific files or dataset

acl amoddobjnsubj

pobj

prep
root

User mgmt The following fields shall be automatically set by the system: Date of request, initiator, requester

advmodamod

auxpass

pobj prep pobj

nsubjpass
root

PROMISE
Defect reports will be available to technical units on a 24x7 basis

acomp prep

pobj

amod nummod

pobjprep

nsubj
root

WASP
The WASP platform must have a web- based form to specify simple POI and service profiles

nsubj

dobj

amod

dobj

amod

nmod
root

Figure 5. Requirements from our datasets showing the dependency types included as features in our approach

User mgmt and ‘technical units’ in PROMISE. Nouns can also

modify nouns (nmod) as in ‘POI . . . profiles’ in WASP.

There are additional four numeric features that count how

many instances of i. adjectival complements (acomp) that affect

the root verb (e.g. ‘available’ in PROMISE), ii. cardinals (CD)

iii. modal verbs (MD), and iv. adverbs (RB).

Finally, the features include the verb types that indicate

dominance of functional or quality aspects. None of the verbs

in fverb occur in Fig. 5, while PROMISE’s main verb is ‘be’,

indicating a quality trait in the requirement (qverb).

The examples show how our feature set provides a rich

characterization of each requirement, which includes many

relationships between non-contiguous words that cannot be

captured easily with an n-gram based approach.

B. Dependency parsing vs. (POS) n-grams

Besides the positive quantitative results (Sec. IV), our

approach’s added value is that, via interpretable ML techniques

that uncover the classification rules, humans can determine

which linguistic structures lead to functional or quality aspects.

To show this advantage, we ran SkopeRules on the top-100

feature set, and compared the identified rules against our

features. We highlight the key findings based on the statistical
co-occurrence of certain patterns with quality or functional

aspects. We use POS tags from the Penn Treebank’s POS

tagset [35], which was used in both [2] and our reconstruction.

Adverbial modifiers as quality indicators. In the OnlyF top-

100 classifier, the POS 3-gram (MD, RB, VB) appears in

SkopeRules: when not present, a requirement possesses also

quality aspects in 32/37 cases. This 3-gram is a lower-level

representation of the advmod dependency from VB to RB.

However, other n-grams may refer to advmod; e.g., the bi-

gram (VB, RB) denotes a quality in 41/53 occurrences.

Detecting functional aspects via direct objects. The Skope-

Rules output for F and OnlyF refer to the n-gram (VB, DT,

NN) as a feature that helps identify functional aspects, when

present (in 383/473 of the cases). In our feature set, this POS

3-gram is generalized by dobj, which is implicitly referred

to by other n-grams in the top-100 features like (VB, DT),

(VB, DT, JJ), and (MD, VB, DT). The last 3-gram is likely to

represent typical cases of a dobj that could be captured by a

4-gram, i.e., (MD, VB, DT, NN), e.g., ‘shall print a paper’. The

dobj dependency appears as a determinant for quality aspects

in the rules shown in Sec. IV-B.

Numerical modifiers as a quality indicator. In SkopeRules

with top-100, the bi-grams (CD, IN) and (CD, NNS) appear

often as indicators of quality aspects. The latter bi-gram, which

indicates quality aspects in 111/122 occurrences, is a lower-

level representation of nummod. Think of sentence fragments

like ‘5 degrees’, ‘2 seconds’, etc. However, the bi-gram would

fail to recognize a fragment like ‘3 consecutive days’, which

denotes a nummod dependency from ‘days’ to ‘3’. In our

feature set, as visible by the rules in Sec. IV-B, nummod is a

likely indicator of quality aspects.

The difficulties with passive sentences. The problem of

sequentiality is exacerbated when we consider passive voice

sentences, which are frequent in requirements; e.g., ‘Users
shall feel satisfied using the product’. 3-grams are unable

to capture these cases; however, with our knowledge of

dependency types, we could read the output of SkopeRules

which includes the 3-gram (VB, VBN, IN): its absence seems to

indicate a requirement with also functional aspects. Our features

nsubjpass and auxpass characterize passive voice sentences.

C. Implications on RE practice and research

Our feature set can be used by RE practitioners such as

product managers and requirements analysis in different ways.

Bootstrapping a classifier with limited data. The quantitative

results and the ROC plots (compare Fig. 4 with Fig. 2) show that

our feature set degrades more gracefully than high-dimensional

classifiers when applied to different datasets. This could be

useful for software organizations who start a new project and

wish to use their existing requirements to train their classifier.

No-machine-learning classifier. For organizations that are not

150

willing to invest in machine learning, the if-then-else rules that

can be extracted by our pipeline can be used to build a static

classifier that, although imperfect, is inexpensive and exhibits

good-enough performance on similarly structured requirements.

Reflecting on requirements authoring. The advanced practi-

tioner can inspect why a requirement is classified in a certain

way by checking the interpretable ML rules, and reflect on the

linguistic practices of authoring good requirements [36].

Researchers and innovative practitioners can use the feature

set for constructing new requirements classifiers that rely on

higher-level linguistic features. Our binary classifier can be

turned into a recommendation tool that provides degrees of

membership for the various aspects: if we take F and Q, the

probability assigned by the classifier can be shown explicitly

instead of using it as a cutoff. For example, a requirement

could have 90% likelihood to have functional aspects, and

60% likelihood to have quality aspects. Furthermore, the list of

functional and quality verbs can be customized for the domain

of use, for the prevalence of qualities is domain specific [12].

VI. THREATS TO VALIDITY

Conclusion validity. The validity of the statistical results is

threatened by the existence of unbalanced datasets, in which not

all classes are evenly represented. This is a general problem

in the RE field: the scarcity of large-scale datasets makes

mitigation techniques like under-sampling impractical.

Internal validity. Although our framework based on Q and

F alleviates taggers from taking a sharp decision in the F/NFR

dichotomy, the results of Table I show the difficulty in obtaining

a consistent coding. We mitigated this through the tagging

reconciliation meetings, yet it is still plausible that other taggers

may have produced a different gold standard, and that the results

may have been slightly different. Also it is possible that the

abstraction level of our reconstruction process could omit some

elements of [28]. We acknowledge that further tests with the

reconstructed classifier are needed to adjust its architecture,

and support our claims with stronger empirical evidence.

Construct validity. Our reconstruction of the feature set by

Kurtanović and Maalej is not perfect, for we were unable to

obtain the actual implementation. A manual comparison of the

most informative features we obtained with those mentioned

in [2], however, reveals a high degree of similarity.

External validity. Our attempt in identifying requirements

datasets that represent heterogeneous industrial practices led

to a varying performance across the datasets. Our feature set

is the basis for constructing classifiers that possess sufficient

initial performance, but domain adaptation is still needed. To

mitigate this possible threat to the generalizability, we publicly

share our code and data for further replications and studies.

VII. RELATED WORK

Non-functional requirements. The NFR Framework [37], [38]

is a cornerstone proposal for handling NFRs. This framework

models requirements as goals and treats NFRs as softgoals,
i.e., goals without a clear-cut criterion for satisfaction. In

practice, however, early stage functional requirements can also

be softgoals due to their vagueness and lack of detail [39].

Glinz [10] divides system requirements into functional re-

quirements, attributes, and constraints. An attribute is either a

performance requirement or a specific quality requirement. A

NFR can be an attribute or a constraint of the system: NFRs

are everything but the functional requirements. Eckhardt et
al. [12] survey 11 requirements specifications to understand the

nature of NFRs used in industry and discover that many NFRs

include functionality, which is in parallel with the classification

framework we use in this paper.

Automated Classifiers for RE. Zhang et al. [40] survey

different ML techniques to automatically classify NFRs and

conclude that individual words are the best index terms in text to

indicate NFRs. Hussain et al. [31] use linguistic features such as

cardinals, adverbs, and modals to train a classifier that identifies

NFRs in software requirements specifications documents. The

approach is also trained and tested on PROMISE. Singh and

Sharme [41] combined automated identification and classifi-

cation of requirements into non-functional requirement sub-

classes via a rule-based classification technique using thematic

roles. They identified the priority of the extracted non-functional

requirements according to their occurrence in multiple classes.

Their application of this method to PROMISE resulted in

F1-measure of 97%. Vogelsang and Winkler [7] introduce

an approach to automatically classify the content elements

of a natural language requirements specification document

as “requirement” or “information” using convolutional neural

networks (CNNs) with a high precision. Navarro-Almanza

et al [42] used Deep Learning (DL) to classify software

requirements using CNNs that have been the state of the art

in other natural language related tasks. They also used the

PROMISE corpus in their evaluation and achieved precision,

recall and f-measure values of 0.80, 0.785 and 0.77 respectively.

Abad et al. [4] demonstrate that Binarized Naive Bayes

performs the best when classifying NFRs into subclasses and

preprocessing and unifying the requirements in the PROMISE

dataset improves the classification performance. This result

is not surprising since PROMISE includes requirements from

15 distinct projects written in different styles. Casamayor et
al. [43] extract NFRs from natural language text. Mahmoud [44]

associates key words with classes of NFRs, calculates co-

occurrence of this terms and creates clusters using this metric.

Then, the clusters are classified under sub-categories of NFRs

with an average accuracy of 73%.

VIII. CONCLUSIONS AND FUTURE WORK

This paper explores interpretable ML as a tool to build

and evaluate classifiers in RE. We investigate the problem of

distinguishing functional and quality aspects in requirements

collections. Our higher-level feature set, applied to a ML

classifier, leads to similar performance to the state of the art.

For interpretable ML to be effective, it is important to rely on

a limited set of features that have clear semantics. We employ

linguistic dependencies that define the main relationships in

a sentence (see Fig. 5), as opposed to the low-level short

sequences of words (n-grams) used by other researchers [2].

151

This paper presents a new approach for requirements classi-

fiers, by describing a construction process and a set of features,

rather than an off-the-shelf classifier. Future work should focus

on constructing classifiers, as suggested in Sec. V-C, and on

providing empirical evidence of their in vivo effectiveness.

ACKNOWLEDGMENT

We would like to thank the European Space Agency and the

European Organisation for the Exploitation of Meteorological

Satellites for sharing with us their requirements data sets.

REFERENCES

[1] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated classifica-
tion of non-functional requirements,” Requirements Engineering, vol. 12,
no. 2, pp. 103–120, 2007.

[2] Z. Kurtanović and W. Maalej, “Automatically classifying functional
and non-functional requirements using supervised machine learning,” in
IEEE International Requirements Engineering Conference (RE), 2017,
pp. 490–495. [Online]. Available: https://doi.org/10.1109/RE.2017.82

[3] M. Binkhonain and L. Zhao, “A review of machine learning algorithms
for identification and classification of non-functional requirements,”
Expert Systems with Applications, 2019, accepted. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417419301459

[4] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider,
“What works better? A study of classifying requirements,” in IEEE
International Requirements Engineering Conference, 2017, pp. 496–501.

[5] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requirements Engineering, vol. 21, no. 3,
pp. 311–331, 2016.

[6] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “AR-miner: Mining
informative reviews for developers from mobile app marketplace,” in
International Conference on Software Engineering, 2014, pp. 767–778.

[7] J. Winkler and A. Vogelsang, “Automatic classification of requirements
based on convolutional neural networks,” in IEEE International Require-
ments Engineering Conference Workshops, 2016, pp. 39–45.

[8] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust
you? Explaining the predictions of any classifier,” in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2016, pp. 1135–1144.

[9] Y. Ming, H. Qu, and E. Bertini, “RuleMatrix: Visualizing and under-
standing classifiers with rules,” IEEE Transactions on Visualization and
Computer Graphics, vol. 25, no. 1, pp. 342–352, 2019.

[10] M. Glinz, “On non-functional requirements,” in IEEE International
Requirements Engineering Conference, 2007, pp. 21–26.

[11] F.-L. Li, J. Horkoff, J. Mylopoulos, R. S. Guizzardi, G. Guizzardi,
A. Borgida, and L. Liu, “Non-functional requirements as qualities, with
a spice of ontology,” in IEEE International Requirements Engineering
Conference, 2014, pp. 293–302.

[12] J. Eckhardt, A. Vogelsang, and D. M. Fernández, “Are “non-functional”
requirements really non-functional? An investigation of non-functional
requirements in practice,” in IEEE/ACM International Conference on
Software Engineering, 2016, pp. 832–842.

[13] The PROMISE repository of empirical software engineering data.
[accessed 8-April-2019]. [Online]. Available: https://terapromise.csc.
ncsu.edu/!/#repo/view/head/requirements/nfr

[14] S. Kübler, R. McDonald, and J. Nivre, Dependency parsing. Morgan
& Claypool Publishers, 2009.

[15] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari,
“Wonderweb deliverable D18, ontology library (final),” WonderWeb
project, Tech. Rep., 2003. [Online]. Available: http://wonderweb.man.ac.
uk/deliverables/documents/D18.pdf

[16] ESA Euclide Mission. [accessed 8-April-2019]. [Online]. Available:
http://sci.esa.int/euclid/

[17] J. Cleland-Huang, M. Vierhauser, and S. Bayley, “Dronology: An incu-
bator for cyber-physical systems research,” in International Conference
on Software Engineering: NIER Track, 2018, pp. 109–112.

[18] ReqView Example Requirements. https://www.reqview.com/doc/
example-requirements-documents.html. [Online; accessed 8-April-2019].

[19] Leeds University Library Requirements. https://leedsunilibrary.files.
wordpress.com/2013/06/repositoryfunctionalrequirementsv1-1_web_1_
.xlsx. [Online; accessed 8-April-2019].

[20] Web Architectures for Services Platforms (WASP) Requirements. https:
//www.zenodo.org/record/581655. [Online; accessed 8-April-2019].

[21] K. Krippendorff, Content analysis: An introduction to its methodology.
Sage publications, 2018.

[22] F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, and S. Çevikol,
“explainable-re/re-2019-materials,” Jul. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.3309669

[23] D. M. Berry, “Evaluation of tools for hairy requirements and software
engineering tasks,” in IEEE International Requirements Engineering
Conference Workshops, 2017, pp. 284–291.

[24] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006.

[25] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
a receiver operating characteristic (ROC) curve,” Radiology, vol. 143,
no. 1, pp. 29–36, 1982.

[26] T. Saito and M. Rehmsmeier, “The precision-recall plot is more
informative than the ROC plot when evaluating binary classifiers on
imbalanced datasets,” PLOS ONE, vol. 10, no. 3, pp. 1–21, 2015.

[27] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in IEEE International Joint
Conference on Neural Networks, 2008, pp. 1322–1328.

[28] Z. Kurtanović and W. Maalej, “On user rationale in software engineering,”
Requirements Engineering, vol. 23, no. 3, pp. 357–379, 2018.

[29] MAST Applied Software Technology Group. [accessed 8-April-
2019]. [Online]. Available: https://mast.informatik.uni-hamburg.de/
app-review-analysis/

[30] N. Kitaev and D. Klein, “Constituency parsing with a self-attentive
encoder,” in Annual Meeting of the Association for Computational
Linguistics: Volume 1, Long Papers, 2018.

[31] I. Hussain, L. Kosseim, and O. Ormandjieva, “Using linguistic knowledge
to classify non-functional requirements in SRS documents,” in Interna-
tional Conference on Application of Natural Language to Information
Systems, 2008, pp. 287–298.

[32] D. Gunning. (2017) Explainable artificial intelligence (XAI). https://
www.darpa.mil/attachments/XAIProgramUpdate.pdf. [Online; accessed
8-April-2019].

[33] SkopeRules. [accessed 8-April-2019]. [Online]. Available: https:
//skope-rules.readthedocs.io/en/latest/

[34] Universal Dependencies. [accessed 8-April-2019]. [Online]. Available:
http://universaldependencies.org/

[35] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a
large annotated corpus of English: The Penn Treebank,” Computational
Linguistics, vol. 19, no. 2, pp. 313–330, 1993.

[36] A. Mavin, P. Wilksinson, S. Gregory, and E. Uusitalo, “Listens learned
(8 lessons learned applying EARS),” in IEEE International Requirements
Engineering Conference, 2016, pp. 276–282.

[37] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunc-
tional requirements: A process-oriented approach,” IEEE Transactions
on Software Engineering, vol. 18, no. 6, pp. 483–497, 1992.

[38] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional
requirements in software engineering. Springer, 2012.

[39] I. J. Jureta, S. Faulkner, and P.-Y. Schobbens, “A more expressive softgoal
conceptualization for quality requirements analysis,” in International
Conference on Conceptual Modeling, 2006, pp. 281–295.

[40] W. Zhang, Y. Yang, Q. Wang, and F. Shu, “An empirical study on classi-
fication of non-functional requirements,” in International Conference on
Software Engineering and Knowledge Engineering, 2011, pp. 190–195.

[41] P. Singh, D. Singh, and A. Sharma, “Classification of non-functional
requirements from SRS documents using thematic roles,” in IEEE
International Symposium on Nanoelectronic and Information Systems
(iNIS), 2016, pp. 206–207.

[42] R. Navarro-Almanza, R. Juarez-Ramirez, and G. Licea, “Towards
supporting software engineering using deep learning: A case of software
requirements classification,” in International Conference in Software
Engineering Research and Innovation, 2017, pp. 116–120.

[43] A. Casamayor, D. Godoy, and M. Campo, “Identification of non-
functional requirements in textual specifications: A semi-supervised
learning approach,” Information and Software Technology, vol. 52, no. 4,
pp. 436–445, 2010.

[44] A. Mahmoud, “An information theoretic approach for extracting and
tracing non-functional requirements,” in IEEE International Requirements
Engineering Conference, 2015, pp. 36–45.

152

