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Abstract This paper describes a technique for automat-

ing the detection and classification of non-functional

requirements related to properties such as security, per-

formance, and usability. Early detection of non-functional

requirements enables them to be incorporated into the

initial architectural design instead of being refactored in at

a later date. The approach is used to detect and classify

stakeholders’ quality concerns across requirements speci-

fications containing scattered and non-categorized

requirements, and also across freeform documents such as

meeting minutes, interview notes, and memos. This paper

first describes the classification algorithm and then evalu-

ates its effectiveness through reporting a series of experi-

ments based on 30 requirements specifications developed

as term projects by MS students at DePaul University. A

new and iterative approach is then introduced for training

or retraining a classifier to detect and classify non-func-

tional requirements (NFR) in datasets dissimilar to the

initial training sets. This approach is evaluated against a

large free-form requirements document obtained from

Siemens Logistics and Automotive Organization. Although

to the NFR classifier is unable to detect all of the NFRs, it

is useful for supporting an analyst in the error-prone task of

manually discovering NFRs, and furthermore can be used

to quickly analyse large and complex documents in order to

search for NFRs.

Keywords Non-functional requirements �
Quality requirements � Classification � Early aspects

1 Introduction

Non-functional requirements (NFR) describe important

constraints upon the development and behaviour of a

software system. They specify a broad range of qualities

such as security, performance, availability, extensibility,

and portability. As these qualities play a critical role in

driving architectural design [1] they should be considered

and specified as early as possible during system analysis.

Unfortunately NFRs are often discovered in an ad-hoc

fashion relatively late in the development process. In a

recent review we conducted of 15 publicly available soft-

ware requirements specifications (SRS) [2], we found an

almost universal lack of any requirements describing non-

functional qualities. This suggests that developers may fail

to appreciate the importance of specifying NFRs or may

falsely assume them to be implicitly understood and agreed

upon by all stakeholders.

Despite a lack of emphasis on NFRs, stakeholders’

quality concerns are often collected as a by-product of the

requirements elicitation process and documented across a

range of artefacts including memos, interview notes, and

meeting minutes. Resulting requirements specifications

tend to be organized by functionality, with non-functional

requirements scattered widely across multiple documents.
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Automated requirements classification
A supervised learning task

Requirement Features Functional

... print a report ... ... Yes

... save the page ... ... Yes

... every three days ... ... No

Requirement Feat Functionallllll

... refresh the display ... ... ?
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State-of-the-art automated requirements classifiers1

Hundreds of features at word level:
text n-grams, Part-Of-Speech n-grams, ...

Requirement print report (print, a) page VB DT (VB, DT) ... Functional

... print a report ... Yes Yes Yes No Yes Yes Yes ... Yes

... save the page ... No No No Yes Yes Yes Yes ... Yes

... every three days ... No No No No Yes No No ... No

... refresh the display ... No No No No Yes Yes Yes ... ?

1e.g., (Kurtanović et al., 2017), (Winkler et al., 2016), (Knauss et al., 2011)
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... save the page ... No No No Yes Yes Yes Yes ... Yes

... every three days ... No No No No Yes No No ... No
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High performance (precision and recall up to ∼ 90%)

1e.g., (Kurtanović et al., 2017), (Winkler et al., 2016), (Knauss et al., 2011)
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State-of-the-art automated requirements classifiers1
Limitations

L1 Absence of validation benchmarks
• Slicing same dataset for training and testing

L2 Dichotomous classification Functional vs Quality
• How to cope with “I want to print a report every 30 seconds”?

L3 Low interpretability and generality
• Many low-level features are used to decide the class

1e.g., (Kurtanović et al., 2017), (Winkler et al., 2016), (Knauss et al., 2011)
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Annotation of 1500+ requirements from 8 datasets
Addressing dataset scarcity (L1) and requirements classes (L2)

Requirements can have both functional and quality aspects (Li et al., 2014).
4 types of requirements: OnlyF, OnlyQ, F+Q, None

Dataset Domain Public Reqs

PROMISE Misc Yes 625
ESA Euclid Satellite No 236
Helpdesk IT No 172
User mgmt IT No 138
Dronology UAS Yes 97
ReqView IT Yes 87
Leeds library IT Yes 85
WASP IT Yes 62

Total 1,502
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Dependency Types: fewer and higher-level features
Addressing low generality and interpretability (L3)

Dependency types describe the relationship between (possibly non-contiguous) words.

Print a report
det

dobj 
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12 word-level features:
print, a, report, (print, a), (a, report), (print, a, report),
VB, DT, NN, (VB, DT), (DR, NN), (VB, DT, NN).

Only 2 dependency types:
dobj and det



Feature engineering with Interpretable ML

Dependency types
in the 8 datasets

Feature set 1 Feature set n

Final 17 features

RuleMatrix
SkopeRules

...
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Experimental Setting

• Reconstruction of (Kurtanović and Maalej, 2017) word-level high-dimensional classifier

• Comparison of the reconstruction against our 17 higher-level features

• Training always on PROMISE NFR dataset (for comparison purposes)

• Testing on different slicing of PROMISE NFR & 7 industrial datasets

• Experiments for F, Q, OnlyQ, OnlyF, F+Q requirements
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500 word-level features vs 17 higher-level features
Comparison with reconstruction of (Kurtanović et al., 2017) classifier

Similar performances:

• On PROMISE NFR:
precision and recall worsen, but the degradation is limited (circa −0.1).

• On the industry datasets:
recall improved for F (+0.16); precision improved for OnlyQ (+0.31) and OnlyF (+0.28).
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Higher level features provide more generality
Comparison with reconstruction of (Kurtanović et al., 2017) classifier

ROC plot to study performance of classifier.

III. APPLYING A HIGH-DIMENSIONAL, WORD-LEVEL
FEATURE SET TO OUR CLASSIFICATION PROBLEM

As a first step of our research on interpretable classifiers for
RE, we need to select a high-dimensional, word-level feature
set to take as a reference in terms of classification performance
and interpretability. Among the existing options [3], we choose
a recent approach [2] that shows excellent performance and is
described extensively in the original paper.

A. Method

Our study involves i. reconstructing the feature set, ii. using
this set in an automated classifier that adopts the same technique
as [2], iii. training the classifier on a dataset (PROMISE
NFR [13], often used in other studies), and iv. assessing the
performance on a heterogeneous set of requirements datasets.
We evaluate the approach in different settings:
Fitness on PROMISE (train). How well does the high-
dimensional classifier1 fit the training dataset that is used to
construct the classification model?
75%-25% splitting of PROMISE (test). A popular way to
perform an inexpensive validation by randomly splitting the
dataset into two: 75% of the entries are used to train the
classifier, the remaining 25% for testing it.
k-fold cross-validation of PROMISE (kfold). The dataset is
split into k evenly sized parts (folds), and the classifier is tested
k times by training it on the k-1 folds and testing it on the
remaining kth fold. We employ stratified k-fold, which ensures
a similar class ratio (positive/negative) in each of the folds.
Project-level cross-validation (pfold). Since PROMISE con-
sists of 15 projects, we use 12 of them as training set, and 3
as a test set. To increase generality, we produce 10 variants
of such partitioning such that every partition has at least 100
requirements and has a balanced F and Q ratio. Moreover, we
ensured that two projects co-occur in at most one test set.
Industrial datasets (industry). The PROMISE-trained classi-
fier is evaluated on the seven industrial datasets of Sec. II. We
train the classifier on PROMISE to study its adaptability to
requirements from different projects.

B. Metrics and tools

While Kurtanović and Maalej [2] had a single binary
classification problem (F vs. NFR) and used metrics for each
of the two classes F and NFR, our framework of Sec. II leads
to four binary classification problems to be studied:
F: does a requirement possess functional aspects?
Q: does requirement possess quality aspects?
OnlyF: does a requirement possess only functional aspects?
OnlyQ: does a requirement possess only quality aspects?
For each of these settings, we employ a combination of metrics
that are widely used in ML to assess the performance of binary
classifiers. Besides the metrics of precision, recall, and F1

1For brevity, we use the term ‘high-dimensional classifier’ to indicate a
‘classifier trained on a high-dimensional feature set’.

score2, which are commonly used in the RE literature, we
use the receiver operating characteristic (ROC) plot and its
associated metric, the area under the ROC curve (AUC).

ROC plots [24] are 2-dimensional charts that show the trade-
off between recall (y-axis) and specificity (the true negatives
rate, x-axis). The so-called ‘ROC heaven’ is the top-left corner,
in which recall is 1.0 and there are no false positives, i.e.,
precision is also 1.0. In ROC plots, classifiers are represented
as a line that is plotted by calculating recall and false positive
rate at different levels of the discrimination threshold. The
discrimination threshold is the value in the [0, 1] range that
a classifier uses to determine when a data item should be
classified as a positive. While this threshold is set to 0.5 by
default for a binary classification problem, it can be adjusted
to alter the sensitivity to false positives.

Better classifiers are characterized by a curve that stays
closer to the top-left corner. The ROC plot provides a single
performance metric for a classifier, the AUC [25], that measures
the degree of separability between the two classes. A perfect
classifier has an AUC of 1.0, an always-wrong classifier has
an AUC of 0.0, and a classifier with random performance has
an AUC of 0.5. Fig. 1 illustrates these notions.
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Figure 1. Illustration of the ROC plot and of the AUC

The ROC curve has some limitations with unbalanced
datasets [26]. Thus, we complement it with an analysis of
precision for unbalanced datasets (e.g., in Table II, Dronology
has only 2 requirements tagged as OnlyQ). We resort to
oversampling to plot smoother ROC curves when the ratio
between the two classes exceeds 10:1 and the minority class
has 6+ requirements. These values are recommended guidelines
for ADASYN [27], a state-of-the-art oversampler that generates
synthetic samples by taking the k closest neighbors as input.

C. Reconstructing Kurtanović and Maalej’s approach

We could not access the original classifier by Kurtanović
and Maalej [2], for it is not available online and the authors
could not give us access to a working copy. Fortunately, the
original publication [2] is relatively clear on the feature set,
and we complemented this knowledge with the classifier that

2We do not study the choice of an appropriate β for the Fβ metric [23],
for its tuning would require us to study the impact of precision and recall on
the daily practices of the development teams who make use of the datasets.
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Higher level features provide more generality
Comparison with reconstruction of (Kurtanović et al., 2017) classifier

Classification of OnlyF requirements (ROC plot).
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Promise test set (AUC = 0.94)
Mean k-fold (AUC = 0.86 ± 0.07)
Mean p-fold (AUC = 0.81 ± 0.04)
ESA Euclid (AUC = 0.48)
Helpdesk (AUC = 0.69)
User mgmt (AUC = 0.63)
Dronology (AUC = 0.66)
ReqView (AUC = 0.60)
Leeds library (AUC = 0.51)
WASP (AUC = 0.64)
± 1 std. dev. from k-fold

(a) SVM 500 word-level features
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Promise test (AUC = 0.91)
Mean k-fold (AUC = 0.78 ± 0.08)
Mean p-fold (AUC = 0.78 ± 0.07)
ESA Euclid (AUC = 0.61)
Helpdesk (AUC = 0.84)
User mgmt (AUC = 0.87)
Dronology (AUC = 0.78)
ReqView (AUC = 0.87)
Leeds library (AUC = 0.77)
WASP (AUC = 0.85)
± 1 std. dev. from k-fold

(b) SVM 17 higher-level interpretable features
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Some interpretable findings with the 17 identified features

• Adverbial modifiers, numerical modifiers, passive sentences typically indicate qualitiesPrint a report
det

dobj 

be automatically set
advmod

... shall

print a report ...
dobj

... shall

three days ...

nummod

every

auxpass

• Direct objects typically indicate functional aspects

Print a report
det

dobj 

be automatically set
advmod

... shall

print a report ...
dobj

... shall

three days ...

nummod

every

auxpass
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Conclusion and Implications on RE practice and research

• Annotation of 1500+ requirements from 8 datasets

• Openly available classifiers

• Few higher-level linguistic dependencies as features for requirements classification
instead of many word-level hard-to-interpret features.

Practical uses:
• Bootstrapping a classifier with limited data
• Interpretability and guidelines for requirements authoring
• Approach appplicable also to: bug vs features vs praises, requirements vs information,

qualities categorization, etc.
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Thank you for your attention.
Download our artifacts!
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Limitations of our approach

• Additional validation is needed

• Training on PROMISE (for comparison purposes)

• Hard(er) to determine high level features that distinguish qualities

• Reconstruction of the state-of-the-art to the extent the paper describes it
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